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Some general principles of radio-frequency pulse sequence design in magic-angle spinning nuclear
magnetic resonance are discussed. Sequences with favorable dipolar recoupling properties may be
designed using synchronous helical modulations of the space and spin parts of the spin Hamiltonian.
The selection rules for the average Hamiltonian may be written in terms of three symmetry numbers,
two defining the winding numbers of the space and spin helices, and one indicating the number of
phase rotation steps in the radio-frequency modulation. A diagrammatic technique is used to
visualize the space-spin symmetry selection. A pulse sequencé ©Bl4lesigned which
accomplishes double-quantum recoupling using a low ratio of radio frequency field to spinning
frequency. The pulse sequence uses 14 radio frequency modulation steps with space and spin
winding numbers of 4 and 5, respectively. The pulse sequence is applied to the double-quantum
spectroscopy of’C,-labeled L-alanine. Good agreement is obtained between the experimental peak
intensities, analytical results, and numerically exact simulations based on the known molecular
geometry. The general symmetry properties of double quantum peaks in recoupled multiple-spin
systems are discussed. A supercycle scheme which compensates homonuclear recoupling sequences
for chemical shifts is introduced. We show an experimental double-quahtGmspectrum of
[U-3C]-L-tyrosine at a spinning frequency of 20.000 kHz. 2000 American Institute of
Physics[S0021-9606800)01214-9

I. INTRODUCTION guantum average Hamiltonians. These alternative modes of
recoupling may be complementary, in the sense that they
Solid state nuclear magnetic resonarib®R) may be  operate best in different circumstances. It has been pointed
used for determining local molecular structures in isotopi-out'? that evolution under a zero-quantum average Hamil-
cally labeled biomolecules. Methods exist for determinationtonian conserves the total longitudinal magnetization in
of accurate intermolecular distances/ and molecular tor-  multiple-spin systems, leading to a uniform distribution of
sional angles® ** The methods have been applied to sys-magnetization at long mixing intervals. This corresponds to
tems such as noncrystalline membrane protéipsoviding  the solution-state TOCSY methd8which is very useful for
information which is currently inaccessible any other way. assignment purposes. The double-quantum methods, on the
Most realistic applications require rapid magic-angleother hand, allow the use of double-quantum spectroscopy to
spinning(MAS) in order to obtain maximal signal intensity establish  assignments, as in the solution-state
and spectral resolution. Molecular structural information iSINADEQUATE experiment:~3*at the same time as ensur-
obtained by applying radio frequendyf) pulse sequences ing complete suppression of isolated spin signals, an impor-
which implement temporary recoupling of the nuclear spintant advantage in large biomolecules.
system, in order to take advantage of the dipole—dipole cou- |n addition, double-quantum techniques have been de-
plings between the nuclear spins. The radio frequency recoyreloped which are insensitive to one of the three Euler
pling schemes may be incorporated into multidimensionahngles determining the orientation of molecules in a powder
procedures, leading to powerful methods for spectral assignsample. This leads to high efficiency in nonoriented

182629 ) ) ;

ment and geometry determinatittt samples>1*So far only rotational resonanc€ achieves this
Most of the existing recoupling methods fall into two jn the case of zero-quantum recoupling.

broad classes, depending on whether they genéiraieleal One of the technical problems affecting current double-

circumstancesa zero-quantum or double-quantum averageguantum recoupling sequences is the need for high rf fields
Hamiltonian for the recoupled spin pairs. For example, theyt the Larmor frequencies of the recoupled spin species
rotational resonanck;’ RFDR? and RIL'? schemes are (henceforth denoted byS. For example, the C¥
zero-quantum recoupling methods. The HORRDRNA  posT-C716 and CMR7® methods require th&spin nuta-
C7" schemes and their varianfs;'” are double-quantum re- jon frequencywS, to be 7 times the sample spinning fre-
coupling techniques. The DRAMAand DRAWS® se- quency,wy,= 7w, . This is not usually a severe problem for
quences produce mixtures of double-quantum and zerasymples containing only one type of spin, since nutation fre-
quencies of around 120 kHz are routinely availaBletow-
3Electronic mail: mhi@physc.su.se ever, the situation is more difficult in the context of biomo-
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lecular NMR, where theSspins usually take the form of multiple-spin systems. In general, the effective recoupling
introduced®®C labels immersed in a pool of abundant pro- Hamiltonian induces global spin dynamics which involve all
tons (henceforth denoted). It is necessary to decouple the recoupled spins at the same time. In this paper we investigate
I-spins from theS-spins at the same time as recoupling thethe dynamics of double-quantum excitation ik*@; cluster.
S-spins with each other. Heteronuclear decoupling is usuallyVe obtain quantitative agreement between the amplitude de-
achieved by applying a strong unmodulated rf field at thevelopment of experimental two-dimensional spectral peaks
I-spin Larmor frequency, at the same time as the recouplingvith analytical results, as well as with numerically exact
rf field on theS-spins. It has been found empirically that the simulations using the known molecular geometry. In addi-
I-spin nutation frequency must approach 3 times $spin  tion we explore the theoretical phase properties of two-
nutation frequency in order to achieve good heteronucleagiimensional double-quantum spectra in multiple-spin re-
recoupling in this contexiw,, = 3w5,.* This is a restrictive  coupled systems and present approximate analytical
condition, since most NMR probes do not tolerate very highexpressions for individual peak amplitudes, as a function of
rf fields on two irradiation channels at the same time. Thethe excitation and reconversion intervals. To demonstrate the
need for good heteronuclear recoupling has so far restricteractical utility of the new sequences, we show an experi-
the biomolecular applications of C7 and its relatives to rathemental double-quantum spectrum ptJ—'3C]-L-tyrosine,
low spinning frequenciestypically around 6 kHz which ~ obtained at a spinning frequency of 20.000 kHz.
leads to a loss of sensitivity, mainly due to chemical shift
anisotropy modulations during the signal acquisitton.

The rf field requirements of C7 may be reduced by em-l. HELICAL RECOUPLING SEQUENCES
plo_yir_lg fivefold symlnjetry instead of sevgnfold symmetry. Synchronous helical modulations
This introduces additional error terms which must be com-
pensated by doubling the length of the sequence. The result- The symbol @y, refers to a set of rotor synchronized rf

ing cycle is called SPC-5 and has the matching conditiorPulse cycles, with the following propertie§) Each rf cycle

wS,=50, .Y has a durationc=nr, /N, wherer,=|27/ w,| is the rotation

Recently, we showed that the symmetry arguments leadReriod, andw; is the sample rotation frequency. This implies
ing to the original C7 sequence may be generaliZed. thatN rf cycles are timed to coincide with sample rotation
class of pulse sequences denotéd ®as been described, in Periods.(ii) Each rf cycle is designed to provide no net evo-
which the symmetry-allowed terms in the average Hamil-lution of the nuclear spin states, when only the rf field is
tonian are chosen according to simple theorems. The protiaken into account(iii) The rf phase of consecutive cycles
lem of heteronuclear decoupling in rotating solids was addiffers by 2zv/N. The phase of theth cycle is therefore

dressed using thet, concepf® give_n_b_ydbp=d30+ 2mvp/N, with p=0,1,2,.... Hereb, is
In the current paper, the nature olN¢ sequences is the initial phase of the whole block. _
explored further. The B! symmetry is identified as provid- The duration of an entire K, sequence is denoted

ing synchronized helical modulations of the space and thé ’\!‘TC_- The symmetr),{ numbens and » may be thought of
spin parts of the spin Hamiltonian. The labetsand » indi- as “winding numbers” of two helices, one representing the

cate thewinding numbersf the space and spin helices. We spatial sample rotation, and one representing the phase rota-

show that generalized helical symmetry admits solutions fofOns of the rf fields. A complete sequence consistsnof
homonuclear recoupling with lower rf field requirements SOMPlete sample rotations amecomplete rf phase rotations.

than the original C7 sequences. We describe a new sequendd!® Sample rotation is continuous, while the pulse phase
s rotations are performed iN discrete steps. A pictorial rep-

denoted C13 which has an rf field requirement ab>, : . o . :
—3.50,, i.e., half of that required in the original C7 method resentation of this concept is given for two different cases in
Lo - Fig. 1.

This allows application at fairly high spinning frequencies Fig. ) )
In the general case, each element C may itself consist of

while still achieving good heteronuclear decoupling. i ) : ;
The pulse sequence Cf,Lpermits operation at high spin- pulses with different phase. However, in this paper, we as-
.sume that the rf field is only subject to amplitude modulation

ning frequencies but is not very well compensated for chemi= RN
cal shift perturbations. In order to further improve its perfor- (°F @7 Phase shiftwithin each cycle C.
mance we employ a supercycle scheme which combines high

double-quantum efficiency with the compensation for chemi-

cal shifts. The supercycled sequence, called SC14, is roughf§- Space-spin selection rules

as broadband as previous recoupling schemes, while permit-  consider a set o\ Sspins, denote®,;,S,,....Sy, ex-

ting application at higher spinning frequency. ~ periencing spin—spin interactions and chemical shift interac-
Double-quantum recoupling is expected to be particUtjons as well as a rotor-synchronized rf pulse sequence with

larly useful in the spectroscopy of heavily labeled biomol-ihe symmetry Gl2. The spin interaction terms are conve-

ecules, which are often easier and cheaper to synthesize thafently described in the interaction frame of the rf field. As

selectively labeled substances. Multidimensional spectrosjescribed in Refs. 14, 15, and 35, the interaction frame

copy will play an important role in spectral assignment, and-agmiltonian at time point may be written
in deriving multiple geometric constraints by simultaneous

distance and angle estimations. Success of this approach will ﬁ(t _ HA (t) 1)
require a solid understanding of the dynamics of recoupled P W
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t0+7
0

SPACE 2. _¢ . ﬁ<2>=(2iT)—1ft dt’ft;'dt[ﬁ(t’),ﬁ(t)], (5)

if the sequence starts at time potfit The first order result
for the effective Hamiltonian is

SPIN A= S, ®
AL, mN,
where
— [T~
Himy, =T Jt . dtHE, (). (7)

As shown in Ref. 35, Eq2) leads to the following symme-
try theorem:

Hf}lﬁiLzo if mn—uv#NXinteger. 8

Similar theorems exist for the higher order Magnus tefmns.

The result Eq(8) allows the design of sequences with desir-
able recoupling properties without calculation of the detailed
structure of the cycle C, at least in the first stage of calcula-

FIG. 1. Visualization of the synchronized helical modulations for two dif- tion.

ferent ON? sequences. In each case the rotation of the space part of the ~1he magnitude of the symmetry allowed terms depend

Hamiltonian(sample rotatiohis shown by a continuous spiral trajectory of on the details of the pulse sequence. In general, a symmetry

the rotor phase, which completesfull revolutions. The trajectory of the allowed term has the form

spin part(rf phasg¢ completesy full revolutions in the same time, iN o

g;lsni:](:get;t.eps{a) Visualization of C3 symmetry.(b) Visualization of C14 Hm)&: Klm)\,u[Alj?n]R exp[ _ Im(ag,_— wrto)}TQ,u . (9
Where[Aﬁn]R is a space component of the interaction tensor
A, written in the rotor-fixed frame, and®, denotes the ini-

where the symbolA represents the type of interaction tial rotor position. For sequences involving onty phase

(chemical shift, spin—spin couplingand the quantum num- shifts, the scaling factok,,,, of a symmetry allowed term

bersl, m, \, u index the symmetry of the term with respect with the quantum numberd,m,\,x) is given by

to rotations of the spin polarizations and with respect to spa-

tial rotations of the sample. The terlﬁﬁnw(t) transforms as

an irreducible spherical tensor of rahkor spatial rotations LN )

and rankx for spin rotations. The component indicesand XJO dtdyo(— Bnult))eXplimetj, (10

w have valuesn=—1,—1+1,...] for space angu=—\,—\

+1,...) for spin. For example, the direct dipole—dipole cou- Where Bg, defines the angle between the rotor axis and the

pling between homonuclear spin pairs has rankg, A=2;  field, and the rf nutation angle is

the J-coupling between homonuclear spin pairs has rdnks Ot

=0, A\=0; the isotropic chemical shift has ranks 0, A=1; Brult)= fo dt’ wn(t") 11

the chemical shift anisotropy and heteronuclear dipolar cou- t

plings have rank$=2, A=1. All components witH=2, m  as described more fully in Ref. 35.

=0 vanish in the case of exact magic-angle spinning. Ex- The consequences of E(B) are conveniently explored

plicit expressions for the various terms may be found inusing space-spin selection diagrar8SS diagrams® as

Refs. 14 and 15. shown in Figs. 2 and 3. These diagrams are similar to the

As shown in Refs. 14, 15, and 35, th&lZsymmetry of  coherence transfer pathway diagraf@I P diagrams”® used

the pulse sequence imposes the following periodic symmetrin the design of phase cycling schemes. The resemblance to

on the interaction frame terms: CTP diagrams is not coincidental: CTP diagrams help one

visualize symmetry selection of terms under rotations of the

gl -1
Kimap = 1#Amo( BrL) Tc

ﬁﬁnw(HpTc):ﬁﬁnw(t)eXp[ i 277(mr[1\|——,uv)[2) . (20 spin pqlarizations around the field a>§herence orderin _
a rotating sample exposed to an rf field, one must take into
The results of the sequence may be analyzed using the Magccount the effect of macroscopic sample rotation, as well as
nus expansion®®’ spin rotations, and this is the task of the SSS diagrams shown
~ _ = — in the current paper.
Ht =HO+H@+HE 4+, ) Figure 2 shows SSS diagrams for thelGequence. The
where the first two ordef are given by plotted levels indicate the total value ofn—uv. The su-
. perposition ofmn and —uv is broken into two stages, so as
ﬁu):rlf‘ +Tdt~H(t), 4) to separate out the effects of spatial rotations and spin rota-
0 tions. The “barrier” at the right-hand side of the diagrams
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a . b . TABLE I. A list of inequivalent Q\; symmetries withN<14, n<5 and
SPACE SPIN & SPACE SEIN 2 0<w=<N/2, suitable for y-encoded double-quantum recoupling. The
II symmetry-allowed terms wittm==*1 and u==2 are shown. All other
terms withm==*=1,+2 and u=0,£1,=2 are suppressed in the first order
average Hamiltonian. Additional variants with similar properties foi,C
are given by GI2N“” whereZ is an integer.

N Sequence o, ) Sequence o, u)
. c7 (-1,2 1,-2) C73 (-1,2 1,-2)
——————————— cof (-1,2 1,-2 ciy (-1,2 1,-2
II (m,)=(1,2) cie (-1,2 (1,-2) c13 (-1,2 (1,-2)
: c13 (-1,2 1,-2)
C73 (-1-2 (12
FIG. 2. Space-spin selection diagrdB8SS diagramfor C73. (a) Suppres- C7} (-1,-2 (1,2 Cc9 (-1,-20 (1,2
sion of all CSA modulation componentgb) Selection of a single 2Q cs} (-1,-2 (1,2 ClO?t (-1,2 1,2
dipole—dipole component, with quantum numbems £&) = (1,2). The mir- C8§ (-1,2 1,-2) Clﬁ (-1,-2) 1,2
ror image pathways stemming from= —1, m= —2 have been suppressed Cg; (-1,-2 (1,2 c13}1 (-1,-2 (1,2
for simplicity. C1G; (-1-2 (12 ci4 (-1,2 (1,-2)
c1y (-1-2 (12
c12 (-1-2 (12 CT: (-1,2 (1,-2)
has holes separated By units, which corresponds to the  C13 (=12 1-2 ,
inequality in the symmetry theorem E@). Pathways which €13 (12 12 C9% =12 1-2

3 _ —
pass through a hole in the barrier indicate space-spin com- gié E_ig 8_2

ponents which are symmetry allowed in the first order aver-
age Hamiltonian.
Figure 2a) shows that all CSA componentsn={=*1,
+2} andu=1{0,+1}) are suppressed by GBymmetry inthe cussed briefly in the context of TPPM decoupliign a
first order average Hamiltonian. Figuréb? shows that only  forthcoming paper, we show that this concept may be ex-
homonuclear dipolar components wittm(u)=(1,2) are ploited to generate even more restrictive selection rules for
symmetry allowedand by implication, alsor,u)=(—1, the average Hamiltonial.
—2)]. The selection of terms witly=+2 indicates double-
guantum recoupling of the nuelear spin_ system. Furthermores; amplitude compensation
the fact that theu=+2 term is associated with only one ) )
spatial rotational componentn=1) is associated with a fa- In this paper, we concentrate on the properties of the
vorable orientation dependence of the double-quanturgeduence CE4which has the SSS diagram shown in Fig. 3.
excitation™* One of the orientational Euler angles is “phase- The space-spin selection properties are identical to that of
encoded,” implying that the phase, but not the amplitude, ofC7z, €xcept that the componentsm(u)=(-1.2) and
the recoupled double-quantum Hamiltonian depends on thel,—2) are selected instead ¢f, 2) and(-1, —2).
value of this angle. This property is partly responsible for the ~ Although the SSS properties of §and C14 are essen-
high efficiency of C7 sequences in nonoriented samifles. tially equivalent in the first order average Hamiltonian, the
The symmetry properties of @7as visualized in Fig. 2, Sequences differ in their robustness with respect to rf ampli-
are independent of the detailed structure of C. The optima‘IUde errors. The reason for this is illustrated in Fig. 4, which
choice of C is dictated by other considerations, for example,
the magnitude of the symmetry-allowed terms, the suppres-
sion of interference from isotropic chemical shifts, @ space SPIN © b SPACE SPIN ©
and the robustness of the sequence with respect to r
inhomogeneity. The cycles (& (27)y(27), and G
= (7/2)o(27) ,(37/2)y have both been exploited in the con-
text of C7 symmetry**® Both cycles are internally com-
pensated for rf inhomogeneity effects, and the latter choice
gives an overall sequence which is particularly robust with
respect to chemical shifts and rf inhomogenéfty.
The solutionN=7,n=2, v=1 is far from unique. Table
| shows some additional solutions for phase encoded double
guantum recoupling. The symmetry é?'ﬁas been pointed
out beforet>3® The symmetries C C91, C1%, and C1%
are particularly interesting, since they permit selective phase-
encoded double-quantum recoupling within a single rotor periG. 3. Space-spin selection diagr85S diagramfor C14,. (a) Suppres-
riod. sion of all CSA modulation componentgb) Selection of a single 2Q

i ; ; dipole—dipole component, with quantum numbers, &)= (1,—2). The
In addition, the interaction frame symmetry K@) may vertical scale of this figure is one half that of Fig. 2. The mirror image

be generated by pulse sequences in WhiCh the rf fields d_o N@hthways stemming fromm=—1, m=—2 have been suppressed for
obviously conform to the N, pattern. This has been dis- simplicity.

p=-2

v=5 | (mu)=(1,-2)

N=14 | N=14
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a 0

3

FIG. 4. (a) rf fields used in Cz, denoted as vectors in the transverse plane.
The numbers refer to the cycle indgx0,1,...,6. The first three elements of

the sequence are denoted as bold vectdmsrf fields used in Clit The
numbers refer to the cycle indep=0,1,...,13. The first three elements of the
sequence are denoted as bold vectors. Consecutive phase values which com-
bine to give good rf error compensation are drawn with the same line style.

2QF Efficiency

shows the sequence of rf phases used in the two sequences.
In Fig. 4(a) the sequence of rf fields in the transverse plane is 30 20 40 ©0 10 20 30
illustrated for the case of G7 The phases are incremented Offset [kHzZ]
between cycles in steps ofrZ/. Suppose that each cycle
rotates the spin polarizations through an angle slightlyrc. 5. simulated double-quantum filtered efficiencies(E@SC14, C14°,
greater than 2. In a first order approximation, the accumu- C14; (b) SC14, POST-C7, SPC-5. The simulations are done for the param-
lated rotations cancel out after a full set of seven cycleseters off ““C;]-glycine at a field of8y=9.4 T (Ref. 41. Powder averaging

However. this cancellation is established very slowly and invas performed using 538 orientatiofig,r, chosen according to the ZCW
' ’ scheme(Ref. 62. In all cases the rf amplitude is given byS /2

practice, Only very small rotation errors are t0|er.ate“:j' It 1S=70.070 kHz. The spinning frequency, the excitation and reconversion in-
therefore necessary to use the symmetrj D7combination  tervals are given by SC14, C34C14,% w,/2m=20.020 kHz, 7e= 7q
with a cycle which isinternally compensated for rf ampli- =599.4us; POST-C7:w,/2m=10.010 kHz, 7g=73=599.4us; SPC-5:
tude errors. The cycles Ne (277)0(277) and G w,/277=14.014 kHz, 7= 7= "713.6us. The theoretical maximum of 73%

_ - : s 7 is indicated by a solid line.

= (7/2)o(27) ,(37/2), fulfill this condition, at the expense

of requiring an rf field which is twice as large as for the
simplest possible sequencg=(2),, which is uncompen-

quency ofw,/27w=11.000 kHz. The figure shows integrals of
sated for rf field amolitude errors double-quantum-filtered spectra as a function of rf field am-
P : plitude for the sequences @hnd C145. Both sequences

The situation .for ClZHs different, as shown in Fig.(8). yse an uncompensated elemental cygje @),. The C?%
Here the step in phase between consecutive cycles IsS mmetry performs rather poorly in this case. The improved
107/14=129°. Since this is close to the angle/3=120°, y yp poorly ' P

each group of three consecutive cycles is well compensatergbusmess of the C34 cycle is visually obvious.
It should be noted that the sequence gﬁmay be de-

for rotation errors. This may be visualized by adding to-rived from two consecutive C%?sequences by adding to
gether the bold vectors in Fig(l. The symmetry C121|s the phase of odd numbered C elements, and continuing the

therefore intrinsically compensated for rf amplitude errors, ttern throuah four rotor periods
and internal compensation of the cycle C may be dispense'%"’l 9 P '

with. It is feasible to use the simplest possible cyclg C 04
=(2m)q, allowing a reduction of the required rf field by a -
factor of 2, for a given spinning frequency, compared t¢ C7 g 03
sequences employing cycles of the forrg=g2)y(27) S 02
or Co=(m/2)o(27) ,(37/2),. U*E_, o1
This compensation mechanism is independent of the w o
sign of ». However, in practice sequences with opposite g 0
signs of v have slightly different performances, because the 01
chemical shift anisotropy interactions have a defined sign. 36 38 40 42
This is illustrated by the simulations in Fig(a, which show WS, 127 [kHZ]

the calculated double-quantum filtered efficiency as a func-
tion of rf irradiation frequency, for parameters correspondingriG. 6. Expetimental measurements of double-quantum filtered efficiency
to [1°C,,"*N]-glycine at a field of 9.4 T! In most of the for C7; and C14° sequences, obtained §#°C,,"*N]-glycine (98% *C,

experimental results shown below, we employ §lihstead ~ 96-99%'™N), at a field ofBo=4.7 T and a spinning frequency ef,/2
=11.000 kHz using a Chemagnetics-Infinity-200 spectrometer, and a cross-

of Cléﬁ' In all eXpe”mental |mplementat|ons we take into polarization contact time of 1.4 ms. The sample was purchased from Cam-
account the sense of the Larmor frequency as well as thgridge Isotope Laboratories and used without further purification. The exci-
radio frequency mixing scheme, as described in Refs. 42 anttion and reconversion intervals were beth= 7r=519.4us. Continuous

43. wave decoupling was applied with the proton nutation frequency 122 kHz
. . . during ON;, and 86 kHz during acquisition. An elemental cyclg C

. EXpe”m%n,tal eVIdence, of the rf compensatlon' meCha_:(er)o was used in both cases. THE nutation frequency is varied along
nism of C14 > is shown in Fig. 6, which shows experimental ihe horizontal axis. The C34 sequence is clearly more robust with respect

results for[13C,,'®N]-glycine, obtained at a spinning fre- to rf amplitude errors.
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As shown in Table I, there are many other feasible soto resonance offset effects and chemical shift anisotropies.
lutions for the symmetry numbeb$, i, andv. For example, This is illustrated in Fig. &). We have constructed super-
the symmetry C§ may be used in conjunction with the cycle cycles of Clé{5 which have an acceptable chemical shift
Co=(2m)o(27)23(27) a3 tO provide a sequence with compensation. One example is the supercycle
good rf amplitude compensation and low rf power require-
ments: w5, = 4.20, .%8 The cycles G=(2m)o(27), and G
= (m/2)o(27) ,(37/2)y are poor choices in this context, be- -l -5 )
cause they lead to very small magnitudes for the recoupled Scla Cl‘ﬁ (o™ C14,™ olr [Cllﬁ]ﬂ
2Q term?®® The cycle G=(2)(27) ,/3(27) 4,3 does not M t-C14,°- ol g7,
suffer from this defect and leads to a £3equence which is
almost as efficient as the C;Lﬁ sequence based onyC
=(2m)y. Table | presumably contains many other solutionsw
with favorable properties, some of which may allow opera-
tion at even higher spinning frequency than 914

here the notatiodl, indicates the insertion of a pulse
element with phase=0 andIl, * indicates the deletion of a
m-pulse element. The notation--], indicates an overall
phase shift of the bracketed sequencedyThe sequence
[T, C14,° -TI,], is therefore a phase-shifted cyclic per-

The sequence Cﬂ with Cy=(21)q has fairly good rf  mutation of the Cl}l5 sequence. The full SC14 sequence
error compensation but is not well compensated with respechay be written as follows:

D. Supercycle construction

36Q) 360128.57 360257.14 36(&5.71 360154.29 360282.86 36051.43
360180 3603;08.57 36077.14 360205.71 3603;34.29 360102.86 360231.43
18025.71 360257.14 360128.57 36Q) 360231.43 360102.86 360334.29
3600571 360714 36030857 36050 36(5143 3608286 36015429 1805571
360].80 360308.57 36077.14 360205.71 360334.29 360.I.02.86 360231.43
36Q) 360128.57 36@57.14 36025.71 360154.29 36(&82.86 36051.43
180205.71 36077.14 3603»08.57 360180 36051.43 360282.86 360154.29
360571 36057.14 3601857 36Q) 3603143 36010286 36053420 18050571

12

where all flip angles and phases are specified in degrees. Thié DOUBLE-QUANTUM SPECTROSCOPY OF
complete sequence spans 16 rotor periods. The theoreticMlULTIPLE-SPIN SYSTEMS
principles of this supercycle are discussed in Appendix A. A pulse sequence

The performance of SC14 with respect to resonance off-
set is illustrated in Fig. Bsolid lineg. Figure §b) shows that
the maximum double-quantum efficiency and offset perfor
mance are comparable to those of POST-C7 and SPC-
(dashed and dotted linesinder these conditions. Note that

all simulations are performed at the same rf field strengthf. Id lied he3 ¢ h
ding to a nutation frequency obS Jom ields applie at the”C Larmor_ requency. The sequence
correspon nu starts with ramped cross polarization to enhanceSispin

=70.070 kHz. However, the sample spinning frequencies "J‘rﬁwagnetizatioﬁ‘.5 The following 7/2-pulse converts the trans-

different in the three cases, corresponding to 10.010 kHz fof,, oo magnetization into longitudingispin magnetization.

POST-C7, 14.014 kHz for SPC-5, and 20.020 kHz for SC14o ramped cross-polarization field and #é pulse have
Figure gb) |Il'ust.rates thg point Fha't SC14 permlts double- tne phases e, and D e, /2 respectively, wherd
quantum excitation at higher spinning frequencies than preme overall rf phase of the preparation interval.
vious pulse sequences, in the case that the rf field strength is  The 7/2-pulse is followed by a 2Q-excitation pulse se-
limited by probe performance and heteronuclear decouplinguence of durationy . The 2Q-excitation sequence converts
requirements. In multiply labeled spin systems, it is generthe S-spin longitudinal magnetization inta-2)-quantum co-
ally desirable to rotate the sample as fast as possible, in ord@erence. The double-quantum excitation sequence starts at
to achieve optimal sensitivity and resolutith. the time pointt? and terminates at time poibg=t2+ 7¢.
Although SC14 performs well at high spinning frequen- In the following discussion, we assume that a g:i4
cies, simulations indicate that it performs poorly at low spin-sequence is used for the double-quantum excitation and re-
ning frequencies. Sequences such as POST-C7 should kenversion as shown in Fig. 7. The SC14 supercycle is dem-
used in this regime. onstrated later on in this paper.

Double-quantum spectroscopy ofC-labeled organic
solids at high MAS spinning frequencies may be performed
ing the radio frequenciyf) pulse sequence shown in Fig.

. The row marked denotes the rf fields at the Larmor
frequency of the abundant protons, whifedenotes the rf

prep IS
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t t; te t T T T m;
: : q)readZE + Em2+ Efloor T ) (13
I -[ ]
L s ; L Prec=0,
B! D | i@ =<I>,_,,§¢ By

P X Ve Te——t e Tp—i- D gg=—Proc— 2(Pg(t )_q)o(t )+ z,
s -||||||K?##ﬁ|||\|| Sz dig= "~ Prec™ 2(PR(t) = PR(t1) + Pread™ 3

______________________________ where the function flodk) returns the largest integer not
= greater tharx. The base reconversion phase for the phase

oI I FLR[ee| ol () ®3(ry) is given by

— BY(r) =
l

wheret andt% are the time points marking the start of the
two C14,° sequences. The interval between these time
Japints depends on the evolution intertalaccording to

t9—t2=re+t, (15)

1 0
+ w,(t —tg), (14)

FIG. 7. Radio frequency pulse sequence for double-quantum 2D spectro
copy using C14°. The phasesben, P, Og, Pqq refer to overall rf
phases of the pulse sequence blocks. The rf receiver phase during sig
detection is denoted . and the post-digitization phase dyyg .

as may be seen in Fig. 7. The link E44) between the pulse
sequence phases and timings allows a completely general
incrementation of the evolution interv&t*® A more re-
stricted version of this result was given earlier by H8hA¢n
practice a more specific form of E¢L4) has proven to be
useful, which for C14° is given by®

The excitation part of the sequence consistg©otycles,
corresponding to an excitation interval ef=qg7c. The
overall phase of the excitation block denotedlis so that
the rf cycles have phaseBg, ®—107/14, & —207/14,
etc. Note that the number of cyclgg is not restricted to be
a multiple of 14. 0, . m 10w 1

The excited double-quantum coherences are allowed to Pr(ty) = 2 TqE+ Ewrtl'
evolve for an intervat,, and are reconverted into longitudi-
nal Sspin magnetization by applying anothgg cycles of

(16)

The data matrixs(ty,t,) is subjected to a complex Fourier
C14;5 irradiation. The reconversion block has duratign transform in the, dimension, and a cosine Fourier transform

=gr7c and an overall phas®r, so that the rf phases are in the t; dimension, in order to obtain the 2D spectrum
given by ®g, ®r—10m/14, dr—207/14, etc. The longitu- S(wq,w,). Under suitable conditions, the 2D spectrum con-

dinal magnetization created by the second If’]_dequence is tﬁ'ns pure apsorptlon double-quantum peaks as discussed in
converted into observable magnetization by/a read pulse, the next section.

whose phase is denot®l.,g.

The complex NMR signal is detected in the subsequenp: Average Hamiltonian and pulse sequence

period using a rf receiver phask,.. and post-digitization propagators

phase shiftd yg. 42 A two-dimensional data matrig(ty,t,) Although C7-like pulse sequences have been used for
is compiled by acquiring a set of transients with incrementatwo-dimensional double-quantum spectroscépt/, an ex-

tion of the intervalt, . plicit theory of this experiment has not been given so far. In

The specification of the rf phases is quite complicatedhe following sections, we develop this theory, concentrating
because ofi) phase cycling in order to select signals passingparticularly on the amplitudes and phases of the two-
through (+2)-quantum coherence in the interval; (i) the  dimensional peaks.
special phase-timing relationships which are required for  Suppose that a double-quantum recoupling sequence is
CN; sequences in the case that an integer number of futhpplied to a set oV coupledS-spins, denote®, ,S,,...,Sy.-
cycles is not completedjii) the time-proportional phase in- The sequence starts at time pdifit with an overall rf phase
crementation(TPP) procedure for separating ther2)- ~ ®°. The time-independent average Hamiltonian under the rf

quantum signalg® pulse sequence is given by

Thg phasesI)pr_ep, CID.E, Dr, Proads Prec: gnd(bdig are _ —
conveniently spemf.led in terms of the transient coumbgr H¢ >:2 ka , (17)
and the evolution increment counter,. The counterm, <k

_O 1 15 is incremented on every achIred tranSIent Whll@vhere the sum is taken over all Sp|n pa"'S Forlp@14£
my is incremented between different ValueSIpf The phase and many other doub|eﬂuantum recoup“ng Sequeﬁc’légj
specifications are the average HamiltoniaH { for a single molecular orienta-

tion has the following form:
(Dprep:q)E:Zm ) (1) _ + 1
Hii'= JI(28 3<+ka28 S +2mIS - S, (18

whereJ;, is theJ-coupling between spinS; andS,, wjy the

— 0 T
Pr(ty) =Pg(ty) + 5 Mz, recoupled through-space dipolar interaction and the asterisk
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denotes the complex conjugate. For the specific case fropagator for a C1#° sequence with duration starting at
C14;5, the recoupled double-quantum dipolar interactiontime pointt=0 and an overall phas&®=0:

depends on the molecular orientation, the time ptintand ~o 18 om
the rf phaseb® according to V(1) =exp{ —iH ™ 0,0)7}. (25
Equation(23) indicates an explicit relationship between the

_ 0 0y — o ai(—opt%+ad +yy gt 200) - :
i (Qyr,t7,07) \/Eblee ' RLTTMR effective phase of the propagation superoperator and the

2 pulse sequence timings. In the experiments, this link is ex-
X > d@(BXNd2 (Bur) ploited to allow arbitrary incrementation of the evolution in-
m=-2 tervalt; .
X e~ IMOBy*+ amR) (199  C. Double-quantum spectra
wheredffnl is a reduced Wigner eleméfiand « corresponds Consider the pulse sequence in Fig. 7. Thel)-

to ky 15, in Eq. (10. The Euler angles Q{;"M guantum coherence generated by the @& pulse is de-
={alX,.BK,,yIX,} describe the transformation of each tected at time point,, using pulse sequences with different
dipole—dipole coupling from its principal axis to a molecule evolution intervalst;. The complex 2D signal amplitude
fixed frame. The Euler angleQ yr={aur.Bur,Ymr} re-  may be written

late the molecular fixed frame to a frame fixed on the rotor. . -

These angles are random variables in a powder. The through s(t; ,t2)=i(SZ|SZ)1(S|U0(t2,O)RX(§)

space dipolar coupling between two spjrendk is given by

b, —_ 107 Vi 20 X VRU(tR,t2) VE[S)), (26)
: 4a r13k , whereUq(ty,t;) expresses free propagation in the absence

wherer , is the spin—spin internuclear distance. The factor of rf fields, from time F’Oi”ua to time pf)il’(l)t'[b. Ve and Vg
are shorthand notations foWg=V(ig,tg,Pg) and Vg

=V(t5,t%,®R). The factori takes into account quadrature
signal detectio?? In additon a normalization factor
(S,|S,) ! has been included. The-1)-quantum operator
fhay be written as a superposition of terms from individual

343| _ e—i(’TT/14))
- 7682m

represents the scaling factor of the homonuclear recouplin
sequence. The C;{ﬁ sequence with g=(2m)y has a scal-
ing factor|;<|z_éo.157. This is slightly higher than that ob-
tained for C% with Cy=(27)o(27), (Ref. 14 or G, —_ —_ .
= (m12)o(27) (37/2)0,® which both have a scaling factor (S |_2 S |_Z (SiSyl. @0
|x|=0.155. The definition of the scaling factor used here, Eq
(10) differs from that given in Ref. 16 by a factor of 2/3.
When a recoupling sequence is applied with overall rf
phase®? and durationr, starting from time point®, and

If the experiment is performed far from rotational
resonance;® and CSA modulations are ignored, the evolu-
tion of the individual(—1)-quantum coherences may be writ-

. ) Y . . ten as

ending at time point?, the corresponding propagation su- . _

peroperator is (S |Up(to,00=exp{(i o™=\t (S |, (28)
\A/(tl,to,cpo)zexp[_iﬁcommogo) 7, (22) wherew!® is the isotropic chemical shift of spir&, andx,

is the coherence decay constant. The result of the fifil

whereH®™™denotes the commutation superoper&tof the pulse may be written

average HamiltoniarH®). We assume that the average

Hamiltonian is independent of the time interval This as- (3_“3{ (Z = (S, +iS,,| (29)
sumption is tested later by comparison with accurate simula- X2 T
tions. which leads to the following expressions for the 2D signal

~ From Eq.(19) the form of the propagation superoperator gmpiitude, neglecting CSA and rotational resonance effects:
is
V(t4,10,@09) = R (DO~ Lo, t%)VO(7)R,(— DO+ 1w, 1), s(ty 1t2)E(Sz|Sz)_1EI (—iSix+ S| VRUo(t1) VEIS,)
(23

whereR,(¢) is the rotation superoperafdr xexp{ (i = \)to}. (30

ﬁzz((b):exp[_i(ﬁégomn} (24) The evolution propagatoU_o(tb,t_a) has been_ wrl_tten_ as

. Ug(ty), for the sake of brevity. Since the Hamiltonian in the
andS;°""is the superoperator for commutation with the to- absence of an rf field commutes wif, the central propa-
tal spin angular momentum along tlzeaxis. V°(7) is the  gator may be written as

VRUo(t)Ve=Ry(®r— 20, tQ VIR — Pp+ D+ 2o, (13— 12) Ug(ty) VIR, — e+ S t2). (31)
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Using the relationship between the pulse sequence phases (+2) N Ol ek et ot ek 10
and timings[Eq. (14)], and taking into account the phase ali %) (e, mR)= —MND (S,IVRIS SIS S/ IVRISHy.
cycling, which selects double-quantum coherences during " (39
the evolution intervat; as well aszmagnetization at time

point tk, we get %) (7e ) =~ N (SulVRIS] SO(S] S VRIS
S(ty,t)=—(S]S) !

The normalization facto1 is given by

06(2)[) (/0
X 20 (S VAP Uo(t) VEIS,) N=(S'S! S S HSIS) !

X exp{(i /= \))t,}, (32 =(S SIS S HSIS) T=(W2PH T (39

where the overbar denotes the phase-cycled signal ampli- The termaf; %} represents the complex amplitude of the
tude. The term¥/2 andVy are abbreviations fov®(rg) and 2D spectral peak at the frequency coordinates ,w;)
VO(7g), respectively. The ternP(® represents a projection =(— 0~ w¢’,0>). The terma}k‘ﬂ represents the com-
superoperator fof+2)-quantum coherences, which may be plex amplitude of the 2D spectral peak at the frequency co-
written in terms of the individual spin operators as follows: ordinates (v ,,) = (w;**+ w°, o). The amplitudes de-

pend on the orientatiof,g through Eq.(19). In a powder,

p2=ptr24p-2 (33)  the orientational average is observed:
with - 1 fzw _
al? =— | da f d sin
Sl IS SH(S' S (@1 ays 82 ), GOMR]| BurSINBuR
A SIS S) .
e (34 X f dymr & (Qur)- (40)
ERCEACEY The 2D spectral peaks fall into two classé$:Peaks of

The sum is to be taken over all spin pairs angthe form (k—j) which represent transfe.r of _double—
(Sj+5k+|3j+5;)=(STSUSTST)ZZMZ- For simplicity, we ~ duantum coherence between spiisand S, into single-
have ignored contributions to the projection superoperatofit@ntum coherence of a spin within the same pair. These
corresponding to double-quantum coherences  involving©2Ks here referred to afirect double-quantum peaksii)
more than two spins. There is no contribution from thesd’€a@ks of the form jk—1), which represent transfer of
terms in the case of two and three spin systems in generguble-quantum coherences between sipand Sy into

and in the case of a multiple-spin system for short time in-Single-guantum coherence of a third sfin These peaks are
tervals e and 7. referred to asndirect double-quantum peaks.

If rotational resonance effects and CSA modulations are. Spectral amplitudes
ignored, the evolution of the individuét-2)-quantum coher-

ences has a simple form: The theoretical expressions E&8) may be used to in-

vestigate the dependence of the 2D peak amplitudes on the

Oo(tl)ISfSlf)zISfSlf)exp[—i(w}s"nL w}f")tl_y\jktl}, excitation and reconversion intervatg and rg. As shown
. ‘ ‘ (35) in Appendix B, the Liouvillian matrix elements are related
Uo(t)[S] SO =18 So)exp +i( o+ 0t — Njyty}, through
where\;, is a douple—quantum deca){ rate constant. (5|Z|{/0( T)|S,-+S<+)=(S|z|\7°( S| S)*,

These expressions may be combined to obtain the phase- (41)
cycled 2D spectral amplitudes: (Sfo|V°(7)|S|Z)=(Sj’S;|V°( 7)|S,)* .

Sty t)=> > (i 2ty ) +si 2ty tp),  (36)  The (+2)-quantum spectral amplitudes are therefore com-
J<k 1 plex conjugates of each other:

where _
| | Al ?)= (a2, u2
(+2 _4(+2 s iso isl AN
s S(t ) =al 5 expl —i(w™°+ o)t +i 0™ _ _ o o
=R T2T Sk ' ko This relationship is not sufficient to prove that 2D spectral

—)\jktl—)ntz}, peaks are pure absorption, after cosine transform intthe
(-2) (-2) . so. s s 37)  dimension. As discussed in standard teXtgure absorption
Sik1(t,t2) =aj 5] exp{+i (o + o)t +iwP™, spectra are obtained only if the amplitudes for the2)-
uantum pathways ameal, as well as being equal.
_)\jktl_)\ltZ}v q p y g eq

It is useful to expand the terms in E(@8) with respect
and the 2D signal amplitude$or a single molecular orien- to the pulse sequence excitation and reconversion intervals
tation) are g and 7g, using
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(S S{IVOUDIS)=THS, S, (S, +iTHY,S,]

2
+()[

S [HUH,S,7]+--)).

(43
Some labor is saved by using the symmetry relationship

(SIVO()|S™SE) = — (S SEVO(7)|S)* (44)

Brinkmann, Edén, and Levitt

*
(SSIVUDIS) =5 | 1 K sin(| w7 (47
leading to the double-quantum peak amplitudes
kt%)J(TE,TR) a; kH)J(TEvTR)
= 25in(| | 7e) sin(| wjk| 7R). (48)

Since the(=2)-quantum peak amplitudes are real and equal,
the two-dimensional double-quantum spectra are in pure ab-

which applies ifJ couplings are ignored, as proved in Ap- sorption, if a cosine Fourier transform is used in the double-

pendix B. If the expansions are carried out to a total order ofjuantum dimension.

4 for the 7z and 7y intervals, we get the following expres-

For three-spin systems, the relevant Liouville space ma-

sions for the direct double-quantum peaks, for a single motrix elements are

lecular orientation:

+2)
}k—»J(TEITR)

11 )
=N §|wjk| TETR

1
2 12
12|wjk| (; loj +I#(j,k) |yl )TETR

1
2 2
_4_8|wjk| (4; |y >+

|wk||2) TETRH
1£(.k)

(49)

The sumX,; implies a sum over all values oot equal to
j, while the sumZ, . ; ,, implies a sum over all values of
not equal to eithef or k. For the indirect double-quantum
peaks we get for a single molecular orientation
a}k—)l(TEyTR)

1

=V _1_6|wjk|2(|wjl|2+|wkl|2)TETg+'" (46)

sin

o

(Sj+3<+|\A/0(T)| i2) = \/——

wrms

2 \/§
X |wk|| +co TwrmsT

X(|wjk|2+|wjl|2)+a

a (49
R 8iw

+gt VO~ =

(S SIV(nS) 3\/§wrms Ir?‘(

V3
XCO{T“’rmST {|ij|2+|wkI|2}-

w rms7'>

where the root-mean-square recoupled interactiggs is
given by

wrms:ﬁ(|w12|2+|w13|2+|w23|2)1/2- (50

The two-dimensional peak amplitudes in E88) evaluate to

If the expansions are carried out to total order of Ginand
TR, Very long expressions are obtained, which roereal in
general. Similar series expansions have been given previ-
ously for the build-up ototal multiple-quantum filtered sig-

nal amplitudes®—>?

The following conclusions can be drawn.

(i) All 2D amplitudes aregeal for small values ofrg and
7r. Under these conditions, the 2D spectra are in pure
absorption, after applying a cosine Fourier transform
in the t; dimension. Pure absorption 2D spectra are
not obtained for single orientations in systems with
N>3, if large values ofrg or 7 are used.

and
(i)  The indirect and direct peaks have opposite signs, for

small values ofrg and 7.
The indirect peaks vanish for small values of the
double-quantum reconversion intervag.

(iii)

Systems of two or three spins are special cases. The 2D
amplitudes may be solved analytically, and the resulting ex-
pressions are real for all values ¢f and rz. For two-spin
systems, only direct double-quantum peaks exist. The rel-
evant Liouvillian matrix elements are

the following expressions:

+2 (-2
aly Zi(re R)=a 2} (e, TR)
| ]k|

T 270?

rms

2 \/§
X |wkI| +co TwrmsTR

V3
n(‘/_wrmsTE)Sm< WrmsTR

X(lek|2+|wjllz)] (51)
aly %\ (re, rR)=al (e, TR)

_ | 1k|
= Sm(\/_wrmsTE)

7wrms

o cod F e

X sin? 3 @msTR co 3 @msTR
X{lel|2+|wkllz}- (52
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FIG. 8. Molecular structure in the samples used for the double-quantum é 2 ¢ M(co,a)
experiments(a) L-alanine;(b) L-tyrosine. -
b a4
3 . ¢4
L (e, B)
Similar results have been presented before for the case o 4
re=1r (Refs. 17 and 58and in the context of zerd and )

triple-quantum® excitation. The expressions for two-spin ol . e ©oP

and three-spin systems are independent of the orientatione Jdoe ’ "
: (€0,

angIeYMR' 4 2 0 2 4 4 2 0 2 4
Equations(51) and(52) show that in three-spin systems, w,/27 [kHz]

the amplitudes for thé*2)-quantum pathways are real and

equal. This implies that the two-dimensional double-FIG. 9. (a8 Experimental 2D double-quantumC spectra of 98%

quantum spectra are in pure absorption after cosine Fourieics—L-alanine, obtained using the pulse sequence in Fig. 7 with

. . . . =441.5us and Tg=207.8us. Note the absorption mode spectral peak
transformation in the double-quantum dimension. For sys: " s " P P P

. . . shapes and the absence of indirect double-quantum p@al&ccurate nu-
tems of more than three spins, one obtains nonabsorption 2Rerical simulations using the known geometry of the three-spin system and
amplitudes for single molecular orientations in the case ofhe simulation parameters in Ref. 55. Powder averaging was performed
long 7 or 7r. However, simulations indicate that absorption using 1154 orientation&,z, chosen according to the ZCW scheffef.

. . o 62.
spectra are obtained after powder averaging even in this case.

E. Double-quantum spectra pulses and neglect of relaxation and were performed using

Experimental results for 98% labeletiC,—L-alanine the COMPUTE algorithfv®in the t, dimension for opti-
[Fig. 8@] at B,=4.7 T and a spinning frequency af./27 mal computational efficiency. Agreement with experiments
=11.000 kHz are shown in Figs. 9—11. The sample was purlS 900d, with the exception of the peak amplitudes. We at-
chased from Cambridge Isotope Laboratories and used witftibute these discrepancies to relaxation effects in the experi-
out further purification. The experiments were performed orinéntal system(see below. The simulations in Fig. 1@)

a Chemagnetics Infinity-200 spectrometer using a filled £mploy an rf field with an amplitude equal to 99.4% of the
mm zirconia rotor. nominal value. The simulation using the nominal rf value

The spectra were obtained using a cross-polarizatiofiSPlays small phase distortions.
contact time of 800us. Cl{S cycles were used for both Flgure_ 11 shows the meas_ure_d mtegrals_of the 2D peaks
excitation and reconversion of double-quantum coherencé$ & function of the reconversion interval, with the exci-
The excitation part of the sequence consistedgpf 17 tation interval remaining fixed at the valug=441.5us.
cycles, which corresponds to an excitation time nf
=441.5us. The evolution intervat; was incremented in

steps of 21.74us. Continuous wave decoupling was used 0 ¢4 ® ¢4
with the proton nutation frequency 100 kHz during the Q 8 (@8)
C14;5 sequences, and 74 kHz during the evolution and ac- o ¢ T U U

quisition intervals. The signal in thé, dimension was . (0,8
apodized with a cdsfunction and converted into the time ,
domain using a cosine Fourier transform. ‘ (€0, 0)
Figure 9a) shows the experimental 2D double-quantum o o / v
8 (@, )
ol 4 ¢ ¢ u H

spectrum for a reconversion intervgd=207.8us. Note the
€0,8)

absence of the indirect double-quantum peaks for this shorfy
value of the reconversion interval. Figure(&0shows ex-
perimental results for a long reconversion interval
=1168.8us. The spectrum displays strong direct and indi- /
rect peaks of both signs. In both cases all peaks are in purt
absorption phase, as predicted. Note that the negative sign ¢ o ¢! / | €0
a peak doesot indicate that it is indirect. a ! ‘1

Figures 9b) and 1@b) show numerically exact simula-
tions of the two-dimensional spectra, using the spin interac-

tion pgrameters given in Ref. 55- The SimU|ati9nS mimic therig. 10. As in Fig. 9, but withre=441.5us andrg=1168.8us. Negative
experiments as closely as possible only assuming rectangulpgaks denoted by gray contour lines.

w, /21 [kHz]

4 2 0 2 4 4 2 0 2 4

w,/21 [kHZ]



8550 J. Chem. Phys., Vol. 112, No. 19, 15 May 2000 Brinkmann, Edén, and Levitt

0al@ b C,* 2N
V N—"7
0.05} e >
0 » i .
w . -
0.05| - I | | ae
2 002 d e f
) S ———~
c 001}
GJ 0 2. am m L]
c W
£ oonf I L e
0119 A~ h ~__] | —
005} A% | s —1 | S’
° e i R T oy
0.05f 11 11 |
04 08 12 16 04 08 12 1.6 04 08 12 16
Tr [MS]

FIG. 11. Main plots: Symbols: Experimental integrals of the 9 spectral peaks in the 2D double-qdé@tspectra of 98%4°C,—L-alanine, obtained using

the pulse sequence in Fig. 7 as a function of the reconversion intggvalhe excitation interval was fixed at=441.5us. The plots show the amplitudes

of Efaksis\glith itshe followiisr;g freis(iuer}gy coordi?saotesligsguz):is(f) (w°+ i(;gﬁ”,wi;cso"o); |(.P) ((L-)Ijo+i(s%§0’ ?S);f"); igc) (w'j'?-&- (.u';", wg?); (d) (wgg+_w',§°, _wgg);_(e)

(0ot wg’, 039 () (08 wp®, g); (9) (08t 0°, 0dd); (b) (gt w?, @g?); () (&t wg®, wg’). Solid lines: accurate numerical simulations of

the amplitudes using the known geometry ancbuplings and including damping. Dashed lines: Analytical solutions given in(Bfjsand (52) including
damping. In both cases the same powder averaging as in (igwas performed. The phenomenological relaxation time constants used (B4Eqre given

by (@—(0); Top,c0=1.34ms,T,z5,=2.34ms, T,z ;=228 ms; (d)—(f), T,co,c0=26.1MS,T,c0,=1.57 MS, T,c0=1.58 Ms; (9)—(1), Tcogco=1.18 ms,
Tcope=1.05ms, Teos,=1.22 ms. Insets: solid lines: simulations using damping. Dotted—dashed lines: simulations without damping. Note the vertical scale
of (d)—(f).

The slow initial build up of the indirect peaks is visually the nine time constants may be divided into three groups of
obvious. Effects involving all three spins are already evidenthree. Each group of three may be estimated simultaneously
for very short reconversion intervals. by a least square fit to three experimental curves. For ex-
The solid lines in the figure are the results of accurateample, T,z co, Tapa. @and T,z 5 are estimated by fitting
three-spin simulations, using the spin interaction parameter@&%ﬂco’, aﬁfﬁi’a', and aﬁz—)»ﬁ, to the experimental results
given in Ref. 55. These simulations use a calculation of thén Figs. 11a)—11(c). Similar estimations can be done for the
two-dimensional double-quantum amplitudes according to two remaining groups of damping time constants. In prac-

tice, the quality of the fit was not very sensitive to the precise

ali? (e, 7R)= —MN (S,|U(RIAIS S0)’ value of these relaxation time constants.
m The dashed lines in Fig. 11 are given by the analytical
X(SfSﬂU(té,tgHsz)’, (53  formula Eq.(51) and Eq.(52), but also use the phenomeno-

- logical damping factors. The same damping time constants
where U(t,t% is the numerical calculated propagator, in- gre used as for the solid lines.
cluding all spin interactions and the evolution interval is set  The inset plots in Fig. 11 compare the exact numerical

1_40 ; H . . . . . P

to zero (e=tg). In practice the matrix elements were calcu- simulations with and without damping. The solid line corre-
lated in Hilbert space. This equation corresponds to the avsponds to the damped curves in the main plot, while the
erage Hamiltonian equatiofq. (38)], but incorporating a  dotted—dashed line represents the simulations without damp-
phenomenological correction for relaxation during the mul-jng,

tiple pulse sequence. The modified matrix elements are given \we have compared these simulations with full two-

by dimensional spectral simulations shown in Fig¢b)9and
(Sfo|0(tl,tg)|SmZ)’=(S]-iS‘flLAJ(tl,tg)|sz)e‘T’Tik,m, '10(.b). .T.he difference between the two simulation results is
(54) insignificant.

" + oty " 4ty /T The agreement between the exact numerical simulations,
(Sz|U(t%e't(F)<)|Sj Sc) :(S'Z|U(t%<’t%)|sj Sc)e ik, analytical results, and the experimental amplitudes is good.
Each of the nine independent time constailig, with ~ The deviations are largest for double-quantum peaks involv-
j,k,|=CO,a, B denoting the correspondinC site, corre- ing CO, which is due to its large CSA. The plotted experi-

sponds to the transfer of an initizZilmagnetization compo- mental amplitudes only contain the centerband contributions,
nent to an individual double-quantum coherence. In practiceand slightly underestimate the full magnetization amplitudes.
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B been demonstrated which employs an exceptional low ratio
L of rf field to spinning frequency while still being robust with
respect to rf amplitude errorgiii) This class of sequences
may be compensated with respect to chemical shift effects by
employing a supercycle schem@) The dynamics of re-
(7.5 coupled multiple-spin systems have been thoroughly ana-
lyzed in the context of double-quantum spectroscopy at high
MAS frequencies. Good agreement is obtained between the
experimental spectra and analytical results as well as humeri-
@0 cally exact simulations, in the case of a three-spin system of
@) known geometry.
g y
The principles of pulse sequence construction described
08 6 42 0 2 4 6 810 here are very general and may be applied to a number of
w,/2x [kHz] other problems in magic-angle-spinning NMR. Applications
FIG. 12. Experimental 2D double-quantumt®C spectrum of to heterOSnUCIear. . decoupling h‘."“’e been described
[98% —U-C]-L-tyrosine, at a field 0B,=9.4 T and a spinning frequency elsewhere?” In addition, the symmetries @:hnd CAE have
of w,/2w=20.000 kHz, obtained using the pulse sequence in Fig. 7 with thddeen used for selection of isotropic Hamiltonidhand
supercycle SC14 for excitation and reconversion of double-quantum cohelhomonuclear decouplinﬁ,respectively, These principles are
ence. The excitation_ and reconversion intervals were 400.1us and7g immediately predictable from the symmetry rules described
=100.0us. The assignments of the double-quantum coherences to the mo- . .
lecular site pairs are indicated along the right-hand axis. in the current paper. Generalized symmetry rules WhICh al-
low the treatment of heteronuclear pulse sequences will be
described elsewhere.

Figure 12 shows an experimental 2D double-quantum  The C14 sequence described in this paper is not a
spectrum of[98%—U-+*C]-L-tyrosine [Fig. 8b)] at By  unique solution for recoupling at high spinning frequency.
=9.4T and a spinning frequency @f,/2m=20.000kHz.  As indicated in Table I, a very large number of usefiN/C
In this case the supercycled sequence SC14 was usesymmetries exist, and each symmetry permits great freedom
The excitation part of the sequence consistedqet=28  in the choice of the elemental cycle. In addition, it is possible
cycles, i.e., the excitation sequence was given byo construct sequences with the same interaction frame sym-
C14;-[I15*-C14,°- o] ;7. The reconversion part of the se- metry as @ sequences, but with elements consisting of
quence consisted @fz=7, i.e., seven elements p€14;],.  zrotations instead of cycles. This additional degree of free-
The excitation and reconversion time intervals were given bydom has been discussed in the context of TPPM
7e=400.1us and7g=100.0us. The sample was purchased decoupling’ in Ref. 35. The results presented here should be
from Cambridge Isotope Laboratories and used without furregarded as defining a framework guiding the search for op-
ther purification. The experiments were performed on a Chetimal sequences. In the end, the choice of the basic element
magnetics Infinity-400 spectrometer using a filled 3.2 mmand the type of symmetry must be guided by more detailed
zirconia rotor. The spectra were obtained using a crosseonsiderations such as the particular form of the recoupled
polarization contact time of 2.5 ms. The evolution intetyal Hamiltonian, and the properties of the higher-order terms.
was incremented in steps of 1&. Continuous wave decou- The solutions discussed in this paper is only one of a huge
pling was used during SC14 with a proton nutation fre-number of possibilities. Furthermore, new symmetry classes
quency of 227 kHz. TPPM decouplitigvas used during the with different selection rules have recently been descried.
evolution intervalt; and the acquisition. The proton nutation Two-dimensional spectroscopy of multiple-spin systems
frequency was 96 kHz. The signal in the dimension was at high spinning frequencies is expected to become increas-
apodized with a cdsfunction and converted into the time ingly important, especially in the solid-state NMR of heavily
domain using a cosine transform. The experimental 2D spedabeled biomolecules. The good agreement of the experimen-
trum permits a straightforward assignment of #i@ peaks,  tal three-spin dynamics with the theoretical curves, as shown
as in the liquid state 2D-INADEQUATE experimefft.>A  in Fig. 11, bodes well for the precise control of spin dynam-
slight nonequivalence of thé, 6" and e, €' sites may be ics in such experiments.
discerned.

o 0 ‘ (—(ll,ﬁ)

w,/2n [kHz]

'bbh'i’onamw

IV. CONCLUSIONS
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APPENDIX A: SUPERCYCLED C N}, SEQUENCES

The spin Hamiltonian in the presence of a rotor synchro-

nized rf pulse sequence is given by
H(t) =Hn(t) + Hy(1), (A1)

where the internal spin Hamiltoniad;,(t) is time depen-

dent because of the sample rotation, while the rf spin Hamil-

tonianH (t) is time dependent because of the modulation of 4 ; .
psequences with desirable properties ). For example,

the rf fields. It is convenient to analyze the spin dynamics i
the interaction frame of the rf field, i.e.,

H(t)=W(t) THi(HW(1), (A2)

where the frame transformation operati(t) solves the
equations

d .

GO = —iHg (WD), (A3)

W(t%=1. (A4)

Brinkmann, Edén, and Levitt

04T B R T
av [ a0, R, ),
(A13)

H2L, =(2iT —1f
Do, =217 |

and

Hy (1) =W(t) THy () W(t). (A14)

The symmetry rules given in E¢B) may be used to engineer

the chemical shift anisotropy componentstf) vanish for

the symmetries Cy, C14,, etc., as given in Table I. It is also
possible to predict the destruction of a large number of cross
terms of the formH{2), .3 However, the remaining high-
order terms cause an undesirable interference between
dipole—dipole recoupling and chemical shift anisotropy.

In order to see how to eliminate such terms, compare
now two sequences with opposite spin winding number
i.e., ON; and G\, ”. For brevity, these sequences are de-
noted (C) and (C). The rf spin Hamiltonians for these

These equations maintain a notational distinction betweefwo sequences are related through
operators which connect states at two different time points

(“propagators’) and those that depend on one time p6ft.

The propagator under the interaction frame Hamiltonian OVel 1 ereR

the durationT of the pulse sequendstarting at time point
t% is expressed in terms of an effective Hamiltonian

U(T+t%,t% =exp{ —iHT}, (A5)

whereH is usually approximated as a truncated Magnus ex

pansion
H=AW+R® (A6)
with
— 0 ~
H(l):T_lf: Tt H(t), (A7)
t
o 0 ’ _ ~
H(2)=(2iT)’1ft0”dt’ﬁ)dt[H(t’),H(t)]- (A8)
t t

The internal part of the spin Hamiltonian may be expressed

using terms with different spherical rankfor rotations of
the spin polarizations

Him(t>=; Hy (1), (A9)

Hrf(C+) =Ry (m)HCT)R( W)Tv (A15)

«(7)=exp{—i7S}. This equation assumes that all rf
phases are reversed in signh between the two sequences, in-
cluding any internal phases within the C elemd(titss latter
condition is unnecessary if the C elements only contain 0 and
7 phase shifts The frame transformation operators for the
two sequences at corresponding points of time are therefore

related through
W(CH;t)=R(m)W(C™;H)R(m)". (A16)

The interaction frame spin Hamiltonians for an interaction of
spin rank\ are related by

H,(C*:t)=W(C*;t)TH, (h)W(C*;t)
=R(mW(C;t)"Ry(m) TH (1)
XR(m)W(C™ ;)R ()"
=(~1)'R(mMH\(CTOR(m'.  (A17)
The last line follows from the transformation property

R(m) ThoRu(m)T=(=1) 0. (A18)

whereH, (t) is proportional to the irreducible spherical spin i fo|10ws that the average Hamiltonian terms for the two

operatorT,,. For example, chemical shift terngboth iso-
tropic and anisotropjc have A=1, while homonuclear
dipole—dipole coupling terms have=2. The Magnus ex-
pansion terms may then be written

ﬁ“):; H®, (A10)
HE= 3 HZ,. (A11)
2:M
where
_ 0T ~
H<K1>=T*1ft:)+ dt H,(t), (A12)

sequences are related by

HP(CH=(—1)R(mHP(CR(m)T, (A19)
HZL, (CH)=(— 1) MR (m)H P, (CT)R(m)".
(A20)

Equation(A19) shows for example, that twolNf, sequences
with opposite signs o cannot be concatenated without de-
stroying the desirablg-encoding of the double-quantum re-
coupling.

Now consider a hypothetical situation in which the
CN,, " sequence is bracketed by two infinitely strong ideal
pulses of phase 0. Denote this bracketed sequence by the
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symbol ([ICII). The effect of ther pulse is to rotate the The residual error terms are reduced further by repeating
overall propagator by the angle around thex axis, which ~ the entire sequence withaphase shift, which generates the
leads to the relationships: SC14 supercycle written in E@12).
HY(CH=(—DMEPaIc 1), (A21)
ﬁ(z) (C+)=(—1))‘2+>‘1§(2) (IIC™11) (A22) APPENDIX B: SYMMETRIES OF DOUBLE-QUANTUM
Aoy h2X A ' SPECTRAL AMPLITUDES

Now suppose that the NIy sequence and the “bracketed” . . .
CN, " sequence are concatenated to build a supercycle. Thi In this appendix, we prove Eq&41) and(44), which are

idealized supercycle is denoted {ICI1). The first order |ﬁ1portant for the calculation of double-quantum spectral

average Hamiltonian term for the supercycle is given b peak amplitudes. -
g perey 9 y First consider the properties of the superoperafor

HO(CHTIC T = HP(CH) + HOPIIC ). (A23)  given by
This has the property V=expl —iH®mmz (B1)

0 for A=odd, Here H°™ s the commutation superoperator of the first-
m”(C*) for A=even (A24)  order average Hamiltonian
A

jcom _ 1)
It follows that this type of supercycle preserves the first order H ”]A)—|[HA( Al- (B2)
average Hamiltonian fon=2 terms(such as dipolar cou- The superoperatoV is a “sandwich superoperator*® with
plings), while destroyinghA=1 terms (such as chemical the property
shifts). These are desirable properties for homonuclear re-

HY(CcIC ) =

V| A — t
coupling sequences. VIA)=IVAVD, (B3)
For the second-order term, the corresponding calculatiowhere the propagatdr is given by
ives —
9 " B V=exp{—irHD}. (B4)
(2) M= 1@
Higx, (CTTICTTD) = 3H K, (CF) The following reasoning may be made:
i — — A|V|B)* = (A|VBV*
—IHEIe ) HEE) (AVIB)" =(AIVBV)
=Tr{(A'VBV")T}
+3HZ,, (TICTIT).  (A25) —Tr{VB'V'A}
For most of the interesting cross terms, the individual se- =Tr{AVBTVT}=(AT|f/|BT). (B5)

guences are designed so as to eliminate the correspondirlwig . ) ) T
H{" terms, so that the commutator may be neglected. This is quation(41) follows by applying Eq.(B5), noting thats,

> V=g~
true, for example, for the cross terms involving the chemical Sz and §7)'=S; .

shift anisotropy, in the case of ¢7and C14 sequences. In order to prove Eq(44), suppose that an operater

Under these conditions, the theorem for the second ordeerXIStS with the following properties:

cross terms is RR'=1,
Y - F—\/1
H{2., (C*TICTII) RVR'=V', .
F—
0 for A,+\,=o0dd, RAR=A,
=1 o A26 _
H(AZZ)XM(CW for A,+\,;=even. (A26) RBR'=-B.
This theorem shows that the second order cross term involvThe follfo|ng reasoAnlng may be developed:
ing the chemical shift anisotropfA=1) and homonuclear (A|V|B)*=(AT|V|BT)
dipole—dipole couplingh=2) vanishes for the (CIIC™II) -
supercycle. =THAVBV'}
In practice, it is not possible to implement the idealized =Tr{RARRVRRBRRV'R'}
short# pulses required by the (TIC~II) supercycle. How- R
ever cyclic permutationof a 7 pulse achieves an approxi- =—Tr{AV'BV}
. . l ey . “
mately similar effect’ A small additional phase shift of the — _THBVAVI = — (B'|V|A). (B7)

pulse sequence is used to compensate for the finite time in-
terval spanned by the permuted element. The symmetry thedhis equation establishes the symmetry relationship in Eq.
rems given in Eqs(A24) and (A26) apply only approxi- (44), if the following identifications are mad&=S,, B
mately to supercycles employing cyclically permuted=SfSki.

elements, but accurate simulations indicate that the approxi- It remains to identify an operatét with the properties in
mation is reasonable. Eq. (B6). If the average Hamiltonian has the form of Eq.
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(17), and theJ couplings are ignored in Eq18), then the
operator

R=exp[

has the appropriate properties.

_izSZ]
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