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Synchronous helical pulse sequences in magic-angle spinning nuclear
magnetic resonance: Double quantum recoupling of multiple-spin systems

Andreas Brinkmann, Mattias Edén, and Malcolm H. Levitta)
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~Received 6 December 1999; accepted 19 January 2000!

Some general principles of radio-frequency pulse sequence design in magic-angle spinning nuclear
magnetic resonance are discussed. Sequences with favorable dipolar recoupling properties may be
designed using synchronous helical modulations of the space and spin parts of the spin Hamiltonian.
The selection rules for the average Hamiltonian may be written in terms of three symmetry numbers,
two defining the winding numbers of the space and spin helices, and one indicating the number of
phase rotation steps in the radio-frequency modulation. A diagrammatic technique is used to
visualize the space-spin symmetry selection. A pulse sequence C144

5 is designed which
accomplishes double-quantum recoupling using a low ratio of radio frequency field to spinning
frequency. The pulse sequence uses 14 radio frequency modulation steps with space and spin
winding numbers of 4 and 5, respectively. The pulse sequence is applied to the double-quantum
spectroscopy of13C3-labeled L-alanine. Good agreement is obtained between the experimental peak
intensities, analytical results, and numerically exact simulations based on the known molecular
geometry. The general symmetry properties of double quantum peaks in recoupled multiple-spin
systems are discussed. A supercycle scheme which compensates homonuclear recoupling sequences
for chemical shifts is introduced. We show an experimental double-quantum13C spectrum of
@U–13C#–L-tyrosine at a spinning frequency of 20.000 kHz. ©2000 American Institute of
Physics.@S0021-9606~00!01214-9#
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I. INTRODUCTION

Solid state nuclear magnetic resonance~NMR! may be
used for determining local molecular structures in isoto
cally labeled biomolecules. Methods exist for determinat
of accurate intermolecular distances,1–17 and molecular tor-
sional angles.18–24 The methods have been applied to sy
tems such as noncrystalline membrane proteins25 providing
information which is currently inaccessible any other way

Most realistic applications require rapid magic-ang
spinning~MAS! in order to obtain maximal signal intensit
and spectral resolution. Molecular structural information
obtained by applying radio frequency~rf! pulse sequence
which implement temporary recoupling of the nuclear s
system, in order to take advantage of the dipole–dipole c
plings between the nuclear spins. The radio frequency rec
pling schemes may be incorporated into multidimensio
procedures, leading to powerful methods for spectral ass
ment and geometry determination.15,26–29

Most of the existing recoupling methods fall into tw
broad classes, depending on whether they generate~in ideal
circumstances! a zero-quantum or double-quantum avera
Hamiltonian for the recoupled spin pairs. For example,
rotational resonance,1–6 RFDR,26 and RIL12 schemes are
zero-quantum recoupling methods. The HORROR13 and
C714 schemes and their variants,15–17are double-quantum re
coupling techniques. The DRAMA9 and DRAWS10 se-
quences produce mixtures of double-quantum and z

a!Electronic mail: mhl@physc.su.se
8530021-9606/2000/112(19)/8539/16/$17.00
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quantum average Hamiltonians. These alternative mode
recoupling may be complementary, in the sense that t
operate best in different circumstances. It has been poin
out12 that evolution under a zero-quantum average Ham
tonian conserves the total longitudinal magnetization
multiple-spin systems, leading to a uniform distribution
magnetization at long mixing intervals. This corresponds
the solution-state TOCSY method,30 which is very useful for
assignment purposes. The double-quantum methods, on
other hand, allow the use of double-quantum spectroscop
establish assignments, as in the solution-st
INADEQUATE experiment,31–33 at the same time as ensu
ing complete suppression of isolated spin signals, an imp
tant advantage in large biomolecules.

In addition, double-quantum techniques have been
veloped which are insensitive to one of the three Eu
angles determining the orientation of molecules in a pow
sample. This leads to high efficiency in nonorient
samples.13,14So far only rotational resonance1–6 achieves this
in the case of zero-quantum recoupling.

One of the technical problems affecting current doub
quantum recoupling sequences is the need for high rf fie
at the Larmor frequencies of the recoupled spin spec
~henceforth denoted byS!. For example, the C7,14

POST-C7,16 and CMR715 methods require theS-spin nuta-
tion frequencyvnut

S to be 7 times the sample spinning fre
quency,vnut

S 57v r . This is not usually a severe problem fo
samples containing only one type of spin, since nutation
quencies of around 120 kHz are routinely available.27 How-
ever, the situation is more difficult in the context of biom
9 © 2000 American Institute of Physics
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lecular NMR, where theS-spins usually take the form o
introduced13C labels immersed in a pool of abundant pr
tons ~henceforth denotedI!. It is necessary to decouple th
I-spins from theS-spins at the same time as recoupling t
S-spins with each other. Heteronuclear decoupling is usu
achieved by applying a strong unmodulated rf field at
I-spin Larmor frequency, at the same time as the recoup
rf field on theS-spins. It has been found empirically that th
I-spin nutation frequency must approach 3 times theS-spin
nutation frequency in order to achieve good heteronuc
recoupling in this context,vnut

I *3vnut
S .15 This is a restrictive

condition, since most NMR probes do not tolerate very h
rf fields on two irradiation channels at the same time. T
need for good heteronuclear recoupling has so far restri
the biomolecular applications of C7 and its relatives to rat
low spinning frequencies~typically around 6 kHz!, which
leads to a loss of sensitivity, mainly due to chemical sh
anisotropy modulations during the signal acquisition.34

The rf field requirements of C7 may be reduced by e
ploying fivefold symmetry instead of sevenfold symmet
This introduces additional error terms which must be co
pensated by doubling the length of the sequence. The re
ing cycle is called SPC-5 and has the matching condit
vnut

S 55v r .17

Recently, we showed that the symmetry arguments le
ing to the original C7 sequence may be generalized.35 A
class of pulse sequences denoted CNn

n has been described, i
which the symmetry-allowed terms in the average Ham
tonian are chosen according to simple theorems. The p
lem of heteronuclear decoupling in rotating solids was
dressed using the CNn

n concept.35

In the current paper, the nature of CNn
n sequences is

explored further. The CNn
n symmetry is identified as provid

ing synchronized helical modulations of the space and
spin parts of the spin Hamiltonian. The labelsm andn indi-
cate thewinding numbersof the space and spin helices. W
show that generalized helical symmetry admits solutions
homonuclear recoupling with lower rf field requiremen
than the original C7 sequences. We describe a new sequ
denoted C144

5, which has an rf field requirement ofvnut
S

53.5v r , i.e., half of that required in the original C7 metho
This allows application at fairly high spinning frequenci
while still achieving good heteronuclear decoupling.

The pulse sequence C144
5 permits operation at high spin

ning frequencies but is not very well compensated for che
cal shift perturbations. In order to further improve its perfo
mance we employ a supercycle scheme which combines
double-quantum efficiency with the compensation for che
cal shifts. The supercycled sequence, called SC14, is rou
as broadband as previous recoupling schemes, while pe
ting application at higher spinning frequency.

Double-quantum recoupling is expected to be parti
larly useful in the spectroscopy of heavily labeled biom
ecules, which are often easier and cheaper to synthesize
selectively labeled substances. Multidimensional spect
copy will play an important role in spectral assignment, a
in deriving multiple geometric constraints by simultaneo
distance and angle estimations. Success of this approach
require a solid understanding of the dynamics of recoup
ly
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multiple-spin systems. In general, the effective recoupl
Hamiltonian induces global spin dynamics which involve
recoupled spins at the same time. In this paper we investi
the dynamics of double-quantum excitation in a13C3 cluster.
We obtain quantitative agreement between the amplitude
velopment of experimental two-dimensional spectral pe
with analytical results, as well as with numerically exa
simulations using the known molecular geometry. In ad
tion we explore the theoretical phase properties of tw
dimensional double-quantum spectra in multiple-spin
coupled systems and present approximate analyt
expressions for individual peak amplitudes, as a function
the excitation and reconversion intervals. To demonstrate
practical utility of the new sequences, we show an exp
mental double-quantum spectrum of@U–13C#–L-tyrosine,
obtained at a spinning frequency of 20.000 kHz.

II. HELICAL RECOUPLING SEQUENCES

A. Synchronous helical modulations

The symbol CNn
n refers to a set of rotor synchronized

pulse cycles, with the following properties:~i! Each rf cycle
has a durationtC5nt r /N, wheret r5u2p/v r u is the rotation
period, andv r is the sample rotation frequency. This implie
that N rf cycles are timed to coincide withn sample rotation
periods.~ii ! Each rf cycle is designed to provide no net ev
lution of the nuclear spin states, when only the rf field
taken into account.~iii ! The rf phase of consecutive cycle
differs by 2pn/N. The phase of thepth cycle is therefore
given byFp5F012pnp/N, with p50,1,2,... . HereF0 is
the initial phase of the whole block.

The duration of an entire CNn
n sequence is denotedT

5NtC. The symmetry numbersn andn may be thought of
as ‘‘winding numbers’’ of two helices, one representing t
spatial sample rotation, and one representing the phase
tions of the rf fields. A complete sequence consists on
complete sample rotations andn complete rf phase rotations
The sample rotation is continuous, while the pulse ph
rotations are performed inN discrete steps. A pictorial rep
resentation of this concept is given for two different cases
Fig. 1.

In the general case, each element C may itself consis
pulses with different phase. However, in this paper, we
sume that the rf field is only subject to amplitude modulati
~or a p phase shift! within each cycle C.

B. Space-spin selection rules

Consider a set ofN S-spins, denotedS1 ,S2 ,...,SN , ex-
periencing spin–spin interactions and chemical shift inter
tions as well as a rotor-synchronized rf pulse sequence w
the symmetry CNn

n . The spin interaction terms are conv
niently described in the interaction frame of the rf field. A
described in Refs. 14, 15, and 35, the interaction fra
Hamiltonian at time pointt may be written

H̃~ t !5 (
L,l ,m,l,m

H̃ lmlm
L ~ t !, ~1!
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where the symbolL represents the type of interactio
~chemical shift, spin–spin coupling!, and the quantum num
bersl, m, l, m index the symmetry of the term with respe
to rotations of the spin polarizations and with respect to s
tial rotations of the sample. The termH̃ lmlm

L (t) transforms as
an irreducible spherical tensor of rankl for spatial rotations
and rankl for spin rotations. The component indicesm and
m have valuesm52 l ,2 l 11,...,l for space andm52l,2l
11,...,l for spin. For example, the direct dipole–dipole co
pling between homonuclear spin pairs has ranksl 52, l52;
the J-coupling between homonuclear spin pairs has rankl
50, l50; the isotropic chemical shift has ranksl 50, l51;
the chemical shift anisotropy and heteronuclear dipolar c
plings have ranksl 52, l51. All components withl 52, m
50 vanish in the case of exact magic-angle spinning.
plicit expressions for the various terms may be found
Refs. 14 and 15.

As shown in Refs. 14, 15, and 35, the CNn
n symmetry of

the pulse sequence imposes the following periodic symm
on the interaction frame terms:

H̃ lmlm
L ~ t1ptC!5H̃ lmlm

L ~ t !expH i
2p~mn2mn!p

N J . ~2!

The results of the sequence may be analyzed using the M
nus expansion:36,37

H̃~ t !5H̄ ~1!1H̄ ~2!1H̄ ~3!1¯, ~3!

where the first two orders36 are given by

H̄ ~1!5T21E
t0

t01T
dt H̃~ t !, ~4!

FIG. 1. Visualization of the synchronized helical modulations for two d
ferent CNn

n sequences. In each case the rotation of the space part o
Hamiltonian~sample rotation! is shown by a continuous spiral trajectory o
the rotor phase, which completesn full revolutions. The trajectory of the
spin part ~rf phase! completesn full revolutions in the same time, inN
discrete steps.~a! Visualization of C72

1 symmetry.~b! Visualization of C144
5

symmetry.
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-

-
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H̄ ~2!5~2iT !21E
t0

t01T
dt8E

t0

t8
dt@H̃~ t8!,H̃~ t !#, ~5!

if the sequence starts at time pointt0. The first order result
for the effective Hamiltonian is

H̄ ~1!5 (
L,l ,m,l,m

H̄ lmlm
L~1! , ~6!

where

H̄ lmlm
L~1! 5T21E

t0

t01T
dt H̃lmlm

L ~ t !. ~7!

As shown in Ref. 35, Eq.~2! leads to the following symme
try theorem:

H̄ lmlm
L~1! 50 if mn2mnÞN3 integer. ~8!

Similar theorems exist for the higher order Magnus term35

The result Eq.~8! allows the design of sequences with des
able recoupling properties without calculation of the detai
structure of the cycle C, at least in the first stage of calcu
tion.

The magnitude of the symmetry allowed terms depe
on the details of the pulse sequence. In general, a symm
allowed term has the form

H̄ lmlm
L~1! 5k lmlm@Alm

L #R exp$2 im~aRL
0 2v r t

0!%Tlm
L , ~9!

where@Alm
L #R is a space component of the interaction ten

L, written in the rotor-fixed frame, andaRL
0 denotes the ini-

tial rotor position. For sequences involving onlyp phase
shifts, the scaling factork lmlm of a symmetry allowed term
with the quantum numbers (l ,m,l,m) is given by

k lmlm5 i mdm0
l ~bRL!tC

21

3E
0

tC
dt dm0

l ~2bnut~ t !!exp$ imv r t%, ~10!

wherebRL defines the angle between the rotor axis and
field, and the rf nutation angle is

bnut~ t !5E
t0

t01t
dt8 vnut~ t8! ~11!

as described more fully in Ref. 35.
The consequences of Eq.~8! are conveniently explored

using space-spin selection diagrams~SSS diagrams!38 as
shown in Figs. 2 and 3. These diagrams are similar to
coherence transfer pathway diagrams~CTP diagrams!39 used
in the design of phase cycling schemes. The resemblanc
CTP diagrams is not coincidental: CTP diagrams help o
visualize symmetry selection of terms under rotations of
spin polarizations around the field axis~coherence order!. In
a rotating sample exposed to an rf field, one must take
account the effect of macroscopic sample rotation, as we
spin rotations, and this is the task of the SSS diagrams sh
in the current paper.

Figure 2 shows SSS diagrams for the C72
1 sequence. The

plotted levels indicate the total value ofmn2mn. The su-
perposition ofmn and2mn is broken into two stages, so a
to separate out the effects of spatial rotations and spin r
tions. The ‘‘barrier’’ at the right-hand side of the diagram

he
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has holes separated byN units, which corresponds to th
inequality in the symmetry theorem Eq.~8!. Pathways which
pass through a hole in the barrier indicate space-spin c
ponents which are symmetry allowed in the first order av
age Hamiltonian.

Figure 2~a! shows that all CSA components~m5$61,
62% andm5$0,61%! are suppressed by C72

1 symmetry in the
first order average Hamiltonian. Figure 2~b! shows that only
homonuclear dipolar components with (m,m)5(1,2) are
symmetry allowed@and by implication, also (m,m)5(21,
22)#. The selection of terms withm562 indicates double-
quantum recoupling of the nuclear spin system. Furtherm
the fact that them512 term is associated with only on
spatial rotational component (m51) is associated with a fa
vorable orientation dependence of the double-quan
excitation.14 One of the orientational Euler angles is ‘‘phas
encoded,’’ implying that the phase, but not the amplitude
the recoupled double-quantum Hamiltonian depends on
value of this angle. This property is partly responsible for
high efficiency of C7 sequences in nonoriented samples14

The symmetry properties of C72
1, as visualized in Fig. 2,

are independent of the detailed structure of C. The opti
choice of C is dictated by other considerations, for exam
the magnitude of the symmetry-allowed terms, the supp
sion of interference from isotropic chemical shift
and the robustness of the sequence with respect t
inhomogeneity. The cycles C05(2p)0(2p)p and C0

5(p/2)0(2p)p(3p/2)0 have both been exploited in the co
text of C72

1 symmetry.14,16 Both cycles are internally com
pensated for rf inhomogeneity effects, and the latter cho
gives an overall sequence which is particularly robust w
respect to chemical shifts and rf inhomogeneity.16

The solutionN57, n52, n51 is far from unique. Table
I shows some additional solutions for phase encoded dou
quantum recoupling. The symmetry C75

1 has been pointed
out before.15,38 The symmetries C71

3, C91
4, C111

5, and C131
6

are particularly interesting, since they permit selective pha
encoded double-quantum recoupling within a single rotor
riod.

In addition, the interaction frame symmetry Eq.~2! may
be generated by pulse sequences in which the rf fields do
obviously conform to the CNn

n pattern. This has been dis

FIG. 2. Space-spin selection diagram~SSS diagram! for C72
1. ~a! Suppres-

sion of all CSA modulation components.~b! Selection of a single 2Q
dipole–dipole component, with quantum numbers (m,m)5(1,2). The mir-
ror image pathways stemming fromm521, m522 have been suppresse
for simplicity.
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cussed briefly in the context of TPPM decoupling.35 In a
forthcoming paper, we show that this concept may be
ploited to generate even more restrictive selection rules
the average Hamiltonian.40

C. rf amplitude compensation

In this paper, we concentrate on the properties of
sequence C144

5, which has the SSS diagram shown in Fig.
The space-spin selection properties are identical to tha
C72

1, except that the components (m,m)5(21,2) and
~1,22! are selected instead of~1, 2! and ~21, 22!.

Although the SSS properties of C72
1 and C144

5 are essen-
tially equivalent in the first order average Hamiltonian, t
sequences differ in their robustness with respect to rf am
tude errors. The reason for this is illustrated in Fig. 4, wh

FIG. 3. Space-spin selection diagram~SSS diagram! for C144
5. ~a! Suppres-

sion of all CSA modulation components.~b! Selection of a single 2Q
dipole–dipole component, with quantum numbers (m,m)5(1,22). The
vertical scale of this figure is one half that of Fig. 2. The mirror ima
pathways stemming fromm521, m522 have been suppressed fo
simplicity.

TABLE I. A list of inequivalent CNn
n symmetries withN<14, n<5 and

0<n<N/2, suitable for g-encoded double-quantum recoupling. Th
symmetry-allowed terms withm561 and m562 are shown. All other
terms withm561,62 andm50,61,62 are suppressed in the first orde
average Hamiltonian. Additional variants with similar properties for CNn

n

are given by CNn
ZN6n whereZ is an integer.

Sequence (m,m) Sequence (m,m)

C71
3 ~21,2! ~1,22! C73

2 ~21,2! ~1,22!
C91

4 ~21,2! ~1,22! C113
4 ~21,2! ~1,22!

C111
5

C131
6

~21,2!
~21,2!

~1,22!
~1,22!

C133
5 ~21,2! ~1,22!

C74
2 ~21,22! ~1,2!

C72
1 ~21,22! ~1,2! C94

2 ~21,22! ~1,2!
C82

1 ~21,22! ~1,2! C104
3 ~21,2! ~1,2!

C82
3 ~21,2! ~1,22! C114

2 ~21,22! ~1,2!
C92

1 ~21,22! ~1,2! C134
2 ~21,22! ~1,2!

C102
1

C112
1

~21,22!
~21,22!

~1,2!
~1,2!

C144
5 ~21,2! ~1,22!

C122
1 ~21,22! ~1,2! C75

1 ~21,2! ~1,22!
C122

5 ~21,2! ~1,22!
C132

1 ~21,22! ~1,2! C95
2 ~21,2! ~1,22!

C115
3 ~21,2! ~1,22!

C135
4 ~21,2! ~1,22!
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shows the sequence of rf phases used in the two seque
In Fig. 4~a! the sequence of rf fields in the transverse plan
illustrated for the case of C72

1. The phases are incremente
between cycles in steps of 2p/7. Suppose that each cyc
rotates the spin polarizations through an angle sligh
greater than 2p. In a first order approximation, the accum
lated rotations cancel out after a full set of seven cyc
However, this cancellation is established very slowly, and
practice, only very small rotation errors are tolerated. It
therefore necessary to use the symmetry C72

1 in combination
with a cycle which isinternally compensated for rf ampli
tude errors. The cycles C05(2p)0(2p)p and C0

5(p/2)0(2p)p(3p/2)0 fulfill this condition, at the expense
of requiring an rf field which is twice as large as for th
simplest possible sequence C05(2p)0 , which is uncompen-
sated for rf field amplitude errors.

The situation for C144
5 is different, as shown in Fig. 4~b!.

Here the step in phase between consecutive cycle
10p/14>129°. Since this is close to the angle 2p/35120°,
each group of three consecutive cycles is well compens
for rotation errors. This may be visualized by adding
gether the bold vectors in Fig. 4~b!. The symmetry C144

5 is
therefore intrinsically compensated for rf amplitude erro
and internal compensation of the cycle C may be dispen
with. It is feasible to use the simplest possible cycle0
5(2p)0 , allowing a reduction of the required rf field by
factor of 2, for a given spinning frequency, compared to C2

1

sequences employing cycles of the form C05(2p)0(2p)p

or C05(p/2)0(2p)p(3p/2)0 .
This compensation mechanism is independent of

sign of n. However, in practice sequences with oppos
signs ofn have slightly different performances, because
chemical shift anisotropy interactions have a defined s
This is illustrated by the simulations in Fig. 5~a!, which show
the calculated double-quantum filtered efficiency as a fu
tion of rf irradiation frequency, for parameters correspond
to @13C2,15N#-glycine at a field of 9.4 T.41 In most of the
experimental results shown below, we employ C144

25 instead
of C144

5. In all experimental implementations we take in
account the sense of the Larmor frequency as well as
radio frequency mixing scheme, as described in Refs. 42
43.

Experimental evidence of the rf compensation mec
nism of C144

25 is shown in Fig. 6, which shows experiment
results for @13C2,15N#-glycine, obtained at a spinning fre

FIG. 4. ~a! rf fields used in C72
1, denoted as vectors in the transverse pla

The numbers refer to the cycle indexq50,1,...,6. The first three elements o
the sequence are denoted as bold vectors.~b! rf fields used in C144

5. The
numbers refer to the cycle indexq50,1,...,13. The first three elements of th
sequence are denoted as bold vectors. Consecutive phase values which
bine to give good rf error compensation are drawn with the same line s
es.
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quency ofv r /2p511.000 kHz. The figure shows integrals
double-quantum-filtered spectra as a function of rf field a
plitude for the sequences C72

1 and C144
25. Both sequences

use an uncompensated elemental cycle C05(2p)0 . The C72
1

symmetry performs rather poorly in this case. The improv
robustness of the C144

25 cycle is visually obvious.
It should be noted that the sequence C144

25 may be de-
rived from two consecutive C72

1 sequences, by addingp to
the phase of odd numbered C elements, and continuing
pattern through four rotor periods.

.

om-
e.

FIG. 5. Simulated double-quantum filtered efficiencies for~a! SC14, C144
25,

C144
5; ~b! SC14, POST-C7, SPC-5. The simulations are done for the par

eters of@13C2#-glycine at a field ofB059.4 T ~Ref. 41!. Powder averaging
was performed using 538 orientationsVMR , chosen according to the ZCW
scheme ~Ref. 62!. In all cases the rf amplitude is given byvnut

S /2p
570.070 kHz. The spinning frequency, the excitation and reconversion
tervals are given by SC14, C144

5, C144
25: v r /2p520.020 kHz, tE5tR

5599.4ms; POST-C7:v r /2p510.010 kHz, tE5tR5599.4ms; SPC-5:
v r /2p514.014 kHz,tE5tR5713.6ms. The theoretical maximum of 73%
is indicated by a solid line.

FIG. 6. Experimental measurements of double-quantum filtered efficie
for C72

1 and C144
25 sequences, obtained on@13C2,15N#-glycine ~98% 13C,

96–99 %15N!, at a field ofB054.7 T and a spinning frequency ofv r /2p
511.000 kHz using a Chemagnetics-Infinity-200 spectrometer, and a cr
polarization contact time of 1.4 ms. The sample was purchased from C
bridge Isotope Laboratories and used without further purification. The e
tation and reconversion intervals were bothtE5tR5519.4ms. Continuous
wave decoupling was applied with the proton nutation frequency 122 k
during CNn

n , and 86 kHz during acquisition. An elemental cycle C0

5(2p)0 was used in both cases. The13C nutation frequency is varied along
the horizontal axis. The C144

25 sequence is clearly more robust with respe
to rf amplitude errors.
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As shown in Table I, there are many other feasible
lutions for the symmetry numbersN, m, andn. For example,
the symmetry C75

1 may be used in conjunction with the cyc
C05(2p)0(2p)2p/3(2p)4p/3 to provide a sequence wit
good rf amplitude compensation and low rf power requi
ments:vnut

S 54.2v r .38 The cycles C05(2p)0(2p)p and C0

5(p/2)0(2p)p(3p/2)0 are poor choices in this context, be
cause they lead to very small magnitudes for the recoup
2Q term.15 The cycle C05(2p)0(2p)2p/3(2p)4p/3 does not
suffer from this defect and leads to a C75

1 sequence which is
almost as efficient as the C144

25 sequence based on C0

5(2p)0 . Table I presumably contains many other solutio
with favorable properties, some of which may allow ope
tion at even higher spinning frequency than C144

25.

D. Supercycle construction

The sequence C144
25 with C05(2p)0 has fairly good rf

error compensation but is not well compensated with resp
T
ti
.
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to resonance offset effects and chemical shift anisotrop
This is illustrated in Fig. 5~a!. We have constructed supe
cycles of C144

25 which have an acceptable chemical sh
compensation. One example is the supercycle

SC145C144
5
•@P0

21
•C144

25
•P0#p/7•@C144

5#p

•@P0
21
•C144

25
•P0] 8p/7 ,

where the notationP0 indicates the insertion of ap pulse
element with phasef50 andP0

21 indicates the deletion of a
p-pulse element. The notation@¯#f indicates an overall
phase shift of the bracketed sequence byf. The sequence
@P0

21
•C144

25
•P0#p/7 is therefore a phase-shifted cyclic pe

mutation of the C144
25 sequence. The full SC14 sequen

may be written as follows:
3600 360128.57 360257.14 36025.71 360154.29 360282.86 36051.43

360180 360308.57 36077.14 360205.71 360334.29 360102.86 360231.43

18025.71 360257.14 360128.57 3600 360231.43 360102.86 360334.29

360205.71 36077.14 360308.57 360180 36051.43 360282.86 360154.29 18025.71

360180 360308.57 36077.14 360205.71 360334.29 360102.86 360231.43

3600 360128.57 360257.14 36025.71 360154.29 360282.86 36051.43

180205.71 36077.14 360308.57 360180 36051.43 360282.86 360154.29

36025.71 360257.14 360128.57 3600 360231.43 360102.86 360334.29 180205.71

~12!
ed
.
r

e

-

e-
ts

ts at

re-
em-
where all flip angles and phases are specified in degrees.
complete sequence spans 16 rotor periods. The theore
principles of this supercycle are discussed in Appendix A

The performance of SC14 with respect to resonance
set is illustrated in Fig. 5~solid lines!. Figure 5~b! shows that
the maximum double-quantum efficiency and offset perf
mance are comparable to those of POST-C7 and SP
~dashed and dotted lines! under these conditions. Note th
all simulations are performed at the same rf field streng
corresponding to a nutation frequency ofvnut

S /2p
570.070 kHz. However, the sample spinning frequencies
different in the three cases, corresponding to 10.010 kHz
POST-C7, 14.014 kHz for SPC-5, and 20.020 kHz for SC
Figure 5~b! illustrates the point that SC14 permits doub
quantum excitation at higher spinning frequencies than p
vious pulse sequences, in the case that the rf field streng
limited by probe performance and heteronuclear decoup
requirements. In multiply labeled spin systems, it is gen
ally desirable to rotate the sample as fast as possible, in o
to achieve optimal sensitivity and resolution.44

Although SC14 performs well at high spinning freque
cies, simulations indicate that it performs poorly at low sp
ning frequencies. Sequences such as POST-C7 shoul
used in this regime.
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III. DOUBLE-QUANTUM SPECTROSCOPY OF
MULTIPLE-SPIN SYSTEMS

A. Pulse sequence

Double-quantum spectroscopy of13C-labeled organic
solids at high MAS spinning frequencies may be perform
using the radio frequency~rf! pulse sequence shown in Fig
7. The row markedI denotes the rf fields at the Larmo
frequency of the abundant protons, whileS denotes the rf
fields applied at the13C Larmor frequency. The sequenc
starts with ramped cross polarization to enhance theS-spin
magnetization.45 The followingp/2-pulse converts the trans
verse magnetization into longitudinalS-spin magnetization.
The ramped cross-polarization field and thep/2 pulse have
the phasesFprep andFprep2p/2 respectively, whereFprep is
the overall rf phase of the preparation interval.

The p/2-pulse is followed by a 2Q-excitation pulse s
quence of durationtE . The 2Q-excitation sequence conver
theS-spin longitudinal magnetization into~62!-quantum co-
herence. The double-quantum excitation sequence star
the time pointtE

0 and terminates at time pointtE
15tE

01tE .
In the following discussion, we assume that a C144

25

sequence is used for the double-quantum excitation and
conversion as shown in Fig. 7. The SC14 supercycle is d
onstrated later on in this paper.
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The excitation part of the sequence consists ofqE cycles,
corresponding to an excitation interval oftE5qEtC. The
overall phase of the excitation block denoted isFE so that
the rf cycles have phasesFE , FE210p/14, FE220p/14,
etc. Note that the number of cyclesqE is not restricted to be
a multiple of 14.

The excited double-quantum coherences are allowe
evolve for an intervalt1 , and are reconverted into longitud
nal S-spin magnetization by applying anotherqR cycles of
C144

25 irradiation. The reconversion block has durationtR

5qRtC and an overall phaseFR , so that the rf phases ar
given byFR , FR210p/14, FR220p/14, etc. The longitu-
dinal magnetization created by the second C144

25 sequence is
converted into observable magnetization by ap/2 read pulse,
whose phase is denotedF read.

The complex NMR signal is detected in the subsequ
period using a rf receiver phaseF rec and post-digitization
phase shiftFdig .42 A two-dimensional data matrixs(t1 ,t2)
is compiled by acquiring a set of transients with incremen
tion of the intervalt1 .

The specification of the rf phases is quite complica
because of~i! phase cycling in order to select signals pass
through ~62!-quantum coherence in thet1 interval; ~ii ! the
special phase-timing relationships which are required
CNn

n sequences in the case that an integer number of
cycles is not completed;~iii ! the time-proportional phase in
crementation~TPPI! procedure for separating the~62!-
quantum signals.39

The phasesFprep, FE , FR , F read, F rec, andFdig are
conveniently specified in terms of the transient counterm2

and the evolution increment counterm1 . The counterm2

50,1,...,15 is incremented on every acquired transient, w
m1 is incremented between different values oft1 . The phase
specifications are

Fprep5FE5
p

4
m1 ,

FR~ t1!5FR
0~ t1!1

p

2
m2 ,

FIG. 7. Radio frequency pulse sequence for double-quantum 2D spec
copy using C144

25. The phasesFprep, FE , FR , F read refer to overall rf
phases of the pulse sequence blocks. The rf receiver phase during s
detection is denotedF rec and the post-digitization phase byFdig .
to

t

-

d
g

r
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F read5
p

2
1

p

2
m21

p

2
floorS m2

4 D , ~13!

F rec50,

Fdig52Frec22~FR~ t1!2FR
0~ t1!!1F read2

p

2
,

where the function floor~x! returns the largest integer no
greater thanx. The base reconversion phase for the ph
FR

0(t1) is given by

FR
0~t1!5

p

2
1

1

2
v r~ tR

02tE
0 !, ~14!

wheretE
0 and tR

0 are the time points marking the start of th
two C144

25 sequences. The interval between these ti
points depends on the evolution intervalt1 according to

tR
02tE

05tE1t1 ~15!

as may be seen in Fig. 7. The link Eq.~14! between the pulse
sequence phases and timings allows a completely gen
incrementation of the evolution interval.41,46 A more re-
stricted version of this result was given earlier by Hong.47 In
practice a more specific form of Eq.~14! has proven to be
useful, which for C144

25 is given by46

FR
0~ t1!5

p

2
2

10p

4
qE1

1

2
v r t1 . ~16!

The data matrixs(t1 ,t2) is subjected to a complex Fourie
transform in thet2 dimension, and a cosine Fourier transfor
in the t1 dimension, in order to obtain the 2D spectru
S(v1 ,v2). Under suitable conditions, the 2D spectrum co
tains pure absorption double-quantum peaks as discuss
the next section.

B. Average Hamiltonian and pulse sequence
propagators

Although C7-like pulse sequences have been used
two-dimensional double-quantum spectroscopy,27,47 an ex-
plicit theory of this experiment has not been given so far.
the following sections, we develop this theory, concentrat
particularly on the amplitudes and phases of the tw
dimensional peaks.

Suppose that a double-quantum recoupling sequenc
applied to a set ofN coupledS-spins, denotedS1 ,S2 ,...,SN .
The sequence starts at time pointt0, with an overall rf phase
F0. The time-independent average Hamiltonian under th
pulse sequence is given by

H̄ ~1!5(
j ,k

H̄ jk
~1! , ~17!

where the sum is taken over all spin pairs. For C72
1, C144

25

and many other double-quantum recoupling sequences,13,15,17

the average HamiltonianH̄ jk
(1) for a single molecular orienta

tion has the following form:

H̄ jk
~1!5v jk*

1
2Sj

1Sk
11v jk

1
2Sj

2Sk
212pJjkSj•Sk , ~18!

whereJjk is theJ-coupling between spinsSj andSk , v jk the
recoupled through-space dipolar interaction and the aste

s-

nal
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denotes the complex conjugate. For the specific case
C144

25, the recoupled double-quantum dipolar interacti
depends on the molecular orientation, the time pointt0, and
the rf phaseF0 according to

v jk~VMR ,t0,F0!5A6bjkkei ~2vr t
01aRL

0
1gMR12F0!

3 (
m522

2

d0m
~2!~bPM

jk !dm21
~2! ~bMR!

3e2 im~gPM
jk

1aMR!, ~19!

wherednm
(2) is a reduced Wigner element48 andk corresponds

to k221222 in Eq. ~10!. The Euler angles VPM
jk

5$aPM
jk ,bPM

jk ,gPM
jk % describe the transformation of eac

dipole–dipole coupling from its principal axis to a molecu
fixed frame. The Euler anglesVMR5$aMR ,bMR ,gMR% re-
late the molecular fixed frame to a frame fixed on the rot
These angles are random variables in a powder. The thro
space dipolar coupling between two spinsj andk is given by

bjk52
m0

4p

g jgk\

r jk
3 , ~20!

wherer jk is the spin–spin internuclear distance. The fact

k5
343~ i 2e2 i ~p/14!!

768A2p
~21!

represents the scaling factor of the homonuclear recoup
sequence. The C144

25 sequence with C05(2p)0 has a scal-
ing factor uku>0.157. This is slightly higher than that ob
tained for C72

1 with C05(2p)0(2p)p ~Ref. 14! or C0

5(p/2)0(2p)p(3p/2)0 ,16 which both have a scaling facto
uku>0.155. The definition of the scaling factor used here,
~10! differs from that given in Ref. 16 by a factor of 2/3.

When a recoupling sequence is applied with overal
phaseF0 and durationt, starting from time pointt0, and
ending at time pointt1, the corresponding propagation s
peroperator is

V̂~ t1,t0,F0!5exp$2 iHC comm~ t0,F0!t%, ~22!

whereHC commdenotes the commutation superoperator49 of the
average HamiltonianH̄ (1). We assume that the averag
Hamiltonian is independent of the time intervalt. This as-
sumption is tested later by comparison with accurate sim
tions.

From Eq.~19! the form of the propagation superoperat
is

V̂~ t1,t0,F0!5R̂z~F02 1
2v r t

0!V̂0~t!R̂z~2F01 1
2v r t

0!,
~23!

whereR̂z(f) is the rotation superoperator49

R̂z~f!5exp$2 ifŜz
comm% ~24!

andŜz
comm is the superoperator for commutation with the t

tal spin angular momentum along thez axis. V̂0(t) is the
of

r.
gh

g

.

f

a-

propagator for a C144
25 sequence with durationt, starting at

time point t50 and an overall phaseF050:

V̂0~t!5exp$2 iHC comm~0,0!t%. ~25!

Equation~23! indicates an explicit relationship between th
effective phase of the propagation superoperator and
pulse sequence timings. In the experiments, this link is
ploited to allow arbitrary incrementation of the evolution i
terval t1 .

C. Double-quantum spectra

Consider the pulse sequence in Fig. 7. The~21!-
quantum coherence generated by the lastp/2 pulse is de-
tected at time pointt2 , using pulse sequences with differe
evolution intervalst1 . The complex 2D signal amplitude
may be written

s~ t1 ,t2!5 i ~SzuSz!
21(S2uÛ0~ t2,0!R̂xS p

2 D
3V̂RÛ0~ tR

0,tE
1 !V̂EuSz), ~26!

where Û0(tb ,ta) expresses free propagation in the abse
of rf fields, from time pointta to time pointtb . V̂E and V̂R

are shorthand notations forV̂E5V̂(tE
1,tE

0,FE) and V̂R

5V̂(tR
1,tR

0,FR). The factori takes into account quadratur
signal detection.42 In addition a normalization facto
(SzuSz)

21 has been included. The~21!-quantum operator
may be written as a superposition of terms from individu
spins:

(S2u5(
l

(Sl
2u5(

l
~Slx2 iSlyu. ~27!

If the experiment is performed far from rotation
resonance,1–6 and CSA modulations are ignored, the evol
tion of the individual~21!-quantum coherences may be wr
ten as

~Sl
2uÛ0~ t2,0!>exp$~ iv l

iso2l l !t2%~Sl
2u, ~28!

wherev l
iso is the isotropic chemical shift of spinsSl , andl l

is the coherence decay constant. The result of the finalp/2
pulse may be written

(Sl
2uR̂xS p

2 D5~Slx1 iSlzu ~29!

which leads to the following expressions for the 2D sign
amplitude, neglecting CSA and rotational resonance effe

s~ t1 ,t2!>~SzuSz!
21(

l
~2 iSlx1SlzuV̂RÛ0~ t1!V̂EuSz!

3exp$~ iv l
iso2l l !t2%. ~30!

The evolution propagatorÛ0(tb ,ta) has been written as
Û0(t1), for the sake of brevity. Since the Hamiltonian in th
absence of an rf field commutes withSz , the central propa-
gator may be written as
V̂RÛ0~ t1!V̂E5R̂z~FR2 1
2v r tR

0 !V̂R
0R̂z~2FR1FE1 1

2v r~ tR
02tE

0 !!Û0~ t1!V̂E
0R̂z~2FE1 1

2v r tE
0 !. ~31!
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Using the relationship between the pulse sequence ph
and timings@Eq. ~14!#, and taking into account the phas
cycling, which selects double-quantum coherences du
the evolution intervalt1 as well asz-magnetization at time
point tR

1, we get

s̄~ t1 ,t2!52~SzuSz!
21

3(
l

~SlzuV̂R
0 P̂~2!Û0~ t1!V̂E

0 uSz!

3exp$~ iv l
iso2l l !t2%, ~32!

where the overbar denotes the phase-cycled signal am
tude. The termsV̂E

0 andV̂R
0 are abbreviations forV̂0(tE) and

V̂0(tR), respectively. The termP̂(2) represents a projectio
superoperator for~62!-quantum coherences, which may b
written in terms of the individual spin operators as follow

P̂~2!5 P̂~12!1 P̂~22! ~33!

with

P̂~12!5(
j ,k

uSj
1Sk

1)~Sj
1Sk

1u
~Sj

1Sk
1uSj

1Sk
1!

,

~34!

P̂~22!5(
j ,k

uSj
2Sk

2)~Sj
2Sk

2u
~Sj

2Sk
2uSj

2Sk
2!

.

The sum is to be taken over all spin pairs a
(Sj

1Sk
1uSj

1Sk
1)5(Sj

1Sk
1uSj

1Sk
1)52N22. For simplicity, we

have ignored contributions to the projection superopera
corresponding to double-quantum coherences involv
more than two spins. There is no contribution from the
terms in the case of two and three spin systems in gen
and in the case of a multiple-spin system for short time
tervalstE andtR .

If rotational resonance effects and CSA modulations
ignored, the evolution of the individual~62!-quantum coher-
ences has a simple form:

Û0~ t1!uSj
1Sk

1)>uSj
1Sk

1)exp$2 i ~v j
iso1vk

iso!t12l jkt1%,
~35!

Û0~ t1!uSj
2Sk

2)>uSj
2Sk

2)exp$1 i ~v j
iso1vk

iso!t12l jkt1%,

wherel jk is a double-quantum decay rate constant.
These expressions may be combined to obtain the ph

cycled 2D spectral amplitudes:

s̄~ t1 ,t2!>(
j ,k

(
l

~sjk→ l
~12!~ t1 ,t2!1sjk→ l

~22!~ t1 ,t2!!, ~36!

where

sjk→ l
~12!~ t1 ,t2!5ajk→ l

~12! exp$2 i ~v j
iso1vk

iso!t11 iv l
isot2

2l jkt12l l t2%,
~37!

sjk→ l
~22!~ t1 ,t2!5ajk→ l

~22! exp$1 i ~v j
iso1vk

iso!t11 iv l
isot2

2l jkt12l l t2%,

and the 2D signal amplitudes~for a single molecular orien
tation! are
ses
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ajk→ l
~12!~tE ,tR!52N(

m
~SlzuV̂R

0 uSj
1Sk

1!~Sj
1Sk

1uV̂E
0 uSmz!,

~38!

ajk→ l
~22!~tE ,tR!52N(

m
~SlzuV̂R

0 uSj
2Sk

2!~Sj
2Sk

2uV̂E
0 uSmz!.

The normalization factorN is given by

N5~Sj
1Sk

1uSj
1Sk

1!21~SzuSz!
21

5~Sj
2Sk

2uSj
2Sk

2!21~SzuSz!
215~N22N24!21. ~39!

The termajk→ l
(12) represents the complex amplitude of th

2D spectral peak at the frequency coordinates (v1 ,v2)
5(2v j

iso2vk
iso,v l

iso). The termajk→ l
(22) represents the com

plex amplitude of the 2D spectral peak at the frequency
ordinates (v1 ,v2)5(v j

iso1vk
iso,v l

iso). The amplitudes de-
pend on the orientationVMR through Eq.~19!. In a powder,
the orientational average is observed:

^ajk→ l
~62! &VMR

5
1

8p2 E
0

2p

daMRE
0

p

dbMR sinbMR

3E
0

2p

dgMR ajk→ l
~62!~VMR!. ~40!

The 2D spectral peaks fall into two classes:~i! Peaks of
the form (jk→ j ) which represent transfer of double
quantum coherence between spinsSj and Sk into single-
quantum coherence of a spin within the same pair. Th
peaks here referred to asdirect double-quantum peaks.~ii !
peaks of the form (jk→ l ), which represent transfer o
double-quantum coherences between spinsSj and Sk into
single-quantum coherence of a third spinSl . These peaks are
referred to asindirect double-quantum peaks.

D. Spectral amplitudes

The theoretical expressions Eq.~38! may be used to in-
vestigate the dependence of the 2D peak amplitudes on
excitation and reconversion intervalstE and tR . As shown
in Appendix B, the Liouvillian matrix elements are relate
through

~SlzuV̂0~t!uSj
1Sk

1!5~SlzuV̂0~t!uSj
2Sk

2!* ,
~41!

~Sj
1Sk

1uV̂0~t!uSlz!5~Sj
2Sk

2uV̂0~t!uSlz!* .

The ~62!-quantum spectral amplitudes are therefore co
plex conjugates of each other:

ajk→ l
~22!5~ajk→ l

~12! !* . ~42!

This relationship is not sufficient to prove that 2D spect
peaks are pure absorption, after cosine transform in tht1

dimension. As discussed in standard texts,39 pure absorption
spectra are obtained only if the amplitudes for the~62!-
quantum pathways arereal, as well as being equal.

It is useful to expand the terms in Eq.~38! with respect
to the pulse sequence excitation and reconversion inter
tE andtR , using
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~Sj
1Sk

1uV̂0~t!uSlz!5Tr$Sj
2Sk

2(Slz1 i t@H̄ ~1!,Slz#

1
~ i t!2

2!
@H̄ ~1!,@H̄ ~1!,Slz##1¯)%.

~43!

Some labor is saved by using the symmetry relationship

~SlzuV̂0~t!uSj
6Sk

6!52~Sj
6Sk

6uV̂0~t!uSlz!* ~44!

which applies ifJ couplings are ignored, as proved in Ap
pendix B. If the expansions are carried out to a total orde
4 for the tE and tR intervals, we get the following expres
sions for the direct double-quantum peaks, for a single m
lecular orientation:

ajk→ j
~12! ~tE ,tR!

>
1

N H 1

2
uv jku2tEtR

2
1

12
uv jku2S (

lÞ j
uv j l u21 (

lÞ~ j ,k!
uvklu2D tE

3tR

2
1

48
uv jku2S 4(

lÞ j
uv j l u21 (

lÞ~ j ,k!
uvklu2D tEtR

31¯J .

~45!

The sum( lÞ j implies a sum over all values ofl not equal to
j, while the sum( lÞ( j ,k) implies a sum over all values ofl
not equal to eitherj or k. For the indirect double-quantum
peaks we get for a single molecular orientation

ajk→ l
~12!~tE ,tR!

>
1

N H 2
1

16
uv jku2~ uv j l u21uvklu2!tEtR

31¯J . ~46!

If the expansions are carried out to total order of 6 intE and
tR , very long expressions are obtained, which arenot real in
general. Similar series expansions have been given pr
ously for the build-up oftotal multiple-quantum filtered sig-
nal amplitudes.50–52

The following conclusions can be drawn.

~i! All 2D amplitudes arereal for small values oftE and
tR . Under these conditions, the 2D spectra are in p
absorption, after applying a cosine Fourier transfo
in the t1 dimension. Pure absorption 2D spectra a
not obtained for single orientations in systems w
N.3, if large values oftE or tR are used.

~ii ! The indirect and direct peaks have opposite signs,
small values oftE andtR .

~iii ! The indirect peaks vanish for small values of t
double-quantum reconversion intervaltR .

Systems of two or three spins are special cases. The
amplitudes may be solved analytically, and the resulting
pressions are real for all values oftE andtR . For two-spin
systems, only direct double-quantum peaks exist. The
evant Liouvillian matrix elements are
f

-

vi-

e

e

r

D
-

l-

~Sj
1Sk

1uV̂0~t!uSjz!5
i

2

v jk*

uv jku
sin~ uv jkut! ~47!

leading to the double-quantum peak amplitudes

ajk→ j
~12! ~tE ,tR!5ajk→ j

~22! ~tE ,tR!

5 1
4sin~ uv jkutE!sin~ uv jkutR!. ~48!

Since the~62!-quantum peak amplitudes are real and equ
the two-dimensional double-quantum spectra are in pure
sorption, if a cosine Fourier transform is used in the doub
quantum dimension.

For three-spin systems, the relevant Liouville space m
trix elements are

~Sj
1Sk

1uV̂0~t!uSjz!5
2iv jk*

3A3v rms
3

sinSA3

2
v rmst D

3H uvklu21cosSA3

2
v rmst D

3~ uv jku21uv j l u2!J ,

~49!

~Sj
1Sk

1uV̂0~t!uSlz!52
8iv jk*

3A3v rms
3

sin3SA3

4
v rmst D

3cosSA3

4
v rmst D $uv j l u21uvklu2%,

where the root-mean-square recoupled interactionv rms is
given by

v rms5
1

A3
~ uv12u21uv13u21uv23u2!1/2. ~50!

The two-dimensional peak amplitudes in Eq.~38! evaluate to
the following expressions:

ajk→ j
~12! ~tE ,tR!5ajk→ j

~22! ~tE ,tR!

5
1uv jku2

27v rms
4 sin~)v rmstE!sinSA3

2
v rmstRD

3H uvklu21cosSA3

2
v rmstRD

3~ uv jku21uv j l u2!J ~51!

and

ajk→ l
~12!~tE ,tR!5ajk→ l

~22!~tE ,tR!

52
4uv jku2

27v rms
4

sin~A3v rmstE!

3sin3SA3

4
v rmstRD cosSA3

4
v rmstRD

3$uv j l u21uvklu2%. ~52!
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Similar results have been presented before for the cas
tE5tR ~Refs. 17 and 53! and in the context of zero53 and
triple-quantum54 excitation. The expressions for two-sp
and three-spin systems are independent of the orientati
anglegMR .

Equations~51! and~52! show that in three-spin system
the amplitudes for the~62!-quantum pathways are real an
equal. This implies that the two-dimensional doub
quantum spectra are in pure absorption after cosine Fou
transformation in the double-quantum dimension. For s
tems of more than three spins, one obtains nonabsorption
amplitudes for single molecular orientations in the case
long tE or tR. However, simulations indicate that absorpti
spectra are obtained after powder averaging even in this c

E. Double-quantum spectra

Experimental results for 98% labeled13C3–L-alanine
@Fig. 8~a!# at B054.7 T and a spinning frequency ofv r /2p
511.000 kHz are shown in Figs. 9–11. The sample was p
chased from Cambridge Isotope Laboratories and used w
out further purification. The experiments were performed
a Chemagnetics Infinity-200 spectrometer using a filled
mm zirconia rotor.

The spectra were obtained using a cross-polariza
contact time of 800ms. C144

25 cycles were used for both
excitation and reconversion of double-quantum coheren
The excitation part of the sequence consisted ofqE517
cycles, which corresponds to an excitation time oftE

5441.5ms. The evolution intervalt1 was incremented in
steps of 21.74ms. Continuous wave decoupling was us
with the proton nutation frequency 100 kHz during t
C144

25 sequences, and 74 kHz during the evolution and
quisition intervals. The signal in thet1 dimension was
apodized with a cos2 function and converted into the tim
domain using a cosine Fourier transform.

Figure 9~a! shows the experimental 2D double-quantu
spectrum for a reconversion intervaltR5207.8ms. Note the
absence of the indirect double-quantum peaks for this s
value of the reconversion interval. Figure 10~a! shows ex-
perimental results for a long reconversion intervaltR

51168.8ms. The spectrum displays strong direct and in
rect peaks of both signs. In both cases all peaks are in
absorption phase, as predicted. Note that the negative sig
a peak doesnot indicate that it is indirect.

Figures 9~b! and 10~b! show numerically exact simula
tions of the two-dimensional spectra, using the spin inter
tion parameters given in Ref. 55. The simulations mimic
experiments as closely as possible only assuming rectang

FIG. 8. Molecular structure in the samples used for the double-quan
experiments:~a! L-alanine;~b! L-tyrosine.
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pulses and neglect of relaxation and were performed us
the COMPUTE algorithm55,56 in the t2 dimension for opti-
mal computational efficiency. Agreement with experimen
is good, with the exception of the peak amplitudes. We
tribute these discrepancies to relaxation effects in the exp
mental system~see below!. The simulations in Fig. 10~b!
employ an rf field with an amplitude equal to 99.4% of th
nominal value. The simulation using the nominal rf val
displays small phase distortions.

Figure 11 shows the measured integrals of the 2D pe
as a function of the reconversion intervaltR , with the exci-
tation interval remaining fixed at the valuetE5441.5ms.

m

FIG. 9. ~a! Experimental 2D double-quantum13C spectra of 98%
13C3–L-alanine, obtained using the pulse sequence in Fig. 7 withtE

5441.5ms and tR5207.8ms. Note the absorption mode spectral pe
shapes and the absence of indirect double-quantum peaks.~b! Accurate nu-
merical simulations using the known geometry of the three-spin system
the simulation parameters in Ref. 55. Powder averaging was perfor
using 1154 orientationsVMR , chosen according to the ZCW scheme~Ref.
62!.

FIG. 10. As in Fig. 9, but withtE5441.5ms andtR51168.8ms. Negative
peaks denoted by gray contour lines.
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FIG. 11. Main plots: Symbols: Experimental integrals of the 9 spectral peaks in the 2D double-quantum13C spectra of 98%13C3–L-alanine, obtained using
the pulse sequence in Fig. 7 as a function of the reconversion intervaltR . The excitation interval was fixed attE5441.5ms. The plots show the amplitude
of peaks with the following frequency coordinates (v1 ,v2): ~a! (va

iso1vb
iso ,vCO

iso); ~b! (va
iso1vb

iso , va
iso); ~c! (va

iso1vb
iso , vb

iso); ~d! (vCO
iso1vb

iso , vCO
iso); ~e!

(vCO
iso1vb

iso , va
iso); ~f! (vCO

iso1vb
iso , vb

iso); ~g! (vCO
iso1va

iso , vCO
iso); ~b! (vCO

iso1va
iso , va

iso); ~i! (vCO
iso1va

iso , vb
iso). Solid lines: accurate numerical simulations

the amplitudes using the known geometry andJ couplings and including damping. Dashed lines: Analytical solutions given in Eqs.~51! and ~52! including
damping. In both cases the same powder averaging as in Fig. 9~b! was performed. The phenomenological relaxation time constants used in Eq.~54! are given
by ~a!–~c!; Tab,CO51.34 ms,Tab,a52.34 ms,Tab,b52.28 ms; ~d!–~f!, TaCO,CO526.1 ms,TaCO,a51.57 ms,TaCO,b51.58 ms; ~g!–~i!, TCOb,CO51.18 ms,
TCOb,a51.05 ms,TCOb,a51.22 ms. Insets: solid lines: simulations using damping. Dotted–dashed lines: simulations without damping. Note the verti
of ~d!–~f!.
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The slow initial build up of the indirect peaks is visual
obvious. Effects involving all three spins are already evid
for very short reconversion intervals.

The solid lines in the figure are the results of accur
three-spin simulations, using the spin interaction parame
given in Ref. 55. These simulations use a calculation of
two-dimensional double-quantum amplitudes according t

ajk→ l
~62!8~tE ,tR!52N(

m
~SlzuÛ~ tR

1,tR
0 !uSj

6Sk
6!8

3~Sj
6Sk

6uÛ~ tE
1,tE

0 !uSmz!8, ~53!

where Û(t1,t0) is the numerical calculated propagator, i
cluding all spin interactions and the evolution interval is
to zero (tE

15tR
0). In practice the matrix elements were calc

lated in Hilbert space. This equation corresponds to the
erage Hamiltonian equation@Eq. ~38!#, but incorporating a
phenomenological correction for relaxation during the m
tiple pulse sequence. The modified matrix elements are g
by

~Sj
6Sk

6uÛ~ tE
1,tE

0 !uSmz!85~Sj
6Sk

6uÛ~ tE
1,tE

0 !uSmz!e
2t/Tjk,m,

~54!

~SlzuÛ~ tR
1,tR

0 !uSj
6Sk

6!85~SlzuÛ~ tR
1,tR

0 !uSj
6Sk

6!e2t/Tjk,l.

Each of the nine independent time constantsTjk,l with
j ,k,l 5CO,a,b denoting the corresponding13C site, corre-
sponds to the transfer of an initialz-magnetization compo
nent to an individual double-quantum coherence. In pract
t

e
rs
e

t

v-

-
en

e,

the nine time constants may be divided into three groups
three. Each group of three may be estimated simultaneo
by a least square fit to three experimental curves. For
ample, Tab,CO, Tab,a , and Tab,b are estimated by fitting
aab→CO

(62) 8, aab→a
(62) 8, andaab→b

(62) 8 to the experimental result
in Figs. 11~a!–11~c!. Similar estimations can be done for th
two remaining groups of damping time constants. In pr
tice, the quality of the fit was not very sensitive to the prec
value of these relaxation time constants.

The dashed lines in Fig. 11 are given by the analyti
formula Eq.~51! and Eq.~52!, but also use the phenomeno
logical damping factors. The same damping time consta
are used as for the solid lines.

The inset plots in Fig. 11 compare the exact numeri
simulations with and without damping. The solid line corr
sponds to the damped curves in the main plot, while
dotted–dashed line represents the simulations without da
ing.

We have compared these simulations with full tw
dimensional spectral simulations shown in Figs. 9~b! and
10~b!. The difference between the two simulation results
insignificant.

The agreement between the exact numerical simulatio
analytical results, and the experimental amplitudes is go
The deviations are largest for double-quantum peaks inv
ing CO, which is due to its large CSA. The plotted expe
mental amplitudes only contain the centerband contributio
and slightly underestimate the full magnetization amplitud
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Figure 12 shows an experimental 2D double-quant
spectrum of @98% – U–13C#–L-tyrosine @Fig. 8~b!# at B0

59.4 T and a spinning frequency ofv r /2p520.000 kHz.
In this case the supercycled sequence SC14 was u
The excitation part of the sequence consisted ofqE528
cycles, i.e., the excitation sequence was given
C144

5
•@P0

21
•C144

25
•P0] p/7 . The reconversion part of the se

quence consisted ofqR57, i.e., seven elements of@C144
5#p .

The excitation and reconversion time intervals were given
tE5400.1ms andtR5100.0ms. The sample was purchase
from Cambridge Isotope Laboratories and used without
ther purification. The experiments were performed on a C
magnetics Infinity-400 spectrometer using a filled 3.2 m
zirconia rotor. The spectra were obtained using a cro
polarization contact time of 2.5 ms. The evolution intervalt1

was incremented in steps of 10ms. Continuous wave decou
pling was used during SC14 with a proton nutation f
quency of 227 kHz. TPPM decoupling57 was used during the
evolution intervalt1 and the acquisition. The proton nutatio
frequency was 96 kHz. The signal in thet1 dimension was
apodized with a cos2 function and converted into the tim
domain using a cosine transform. The experimental 2D sp
trum permits a straightforward assignment of the13C peaks,
as in the liquid state 2D-INADEQUATE experiment.32,33 A
slight nonequivalence of thed, d8 and e, e8 sites may be
discerned.

IV. CONCLUSIONS

The results given in this paper may be summarized
follows: ~i! It is possible to develop a general theory of r
coupling in magic-angle-spinning solids, exploiting synch
nized helical modulations of the space and spin parts of
nuclear magnetic interactions. The average Hamilton
properties of such sequences may be formulated in term
the three symmetry numbers for the pulse sequence.~ii !
These principles may be applied to the problem of spin s
tem recoupling at high spinning frequencies. A sequence

FIG. 12. Experimental 2D double-quantum13C spectrum of
@98% – U–13C# –L-tyrosine, at a field ofB059.4 T and a spinning frequenc
of v r /2p520.000 kHz, obtained using the pulse sequence in Fig. 7 with
supercycle SC14 for excitation and reconversion of double-quantum co
ence. The excitation and reconversion intervals weretE5400.1ms andtR

5100.0ms. The assignments of the double-quantum coherences to the
lecular site pairs are indicated along the right-hand axis.
ed.

y

y

r-
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been demonstrated which employs an exceptional low r
of rf field to spinning frequency while still being robust wit
respect to rf amplitude errors.~iii ! This class of sequence
may be compensated with respect to chemical shift effects
employing a supercycle scheme.~iv! The dynamics of re-
coupled multiple-spin systems have been thoroughly a
lyzed in the context of double-quantum spectroscopy at h
MAS frequencies. Good agreement is obtained between
experimental spectra and analytical results as well as num
cally exact simulations, in the case of a three-spin system
known geometry.

The principles of pulse sequence construction descri
here are very general and may be applied to a numbe
other problems in magic-angle-spinning NMR. Applicatio
to heteronuclear decoupling have been descri
elsewhere.35 In addition, the symmetries C31

0 and C41
0 have

been used for selection of isotropic Hamiltonians58 and
homonuclear decoupling,59 respectively. These principles ar
immediately predictable from the symmetry rules describ
in the current paper. Generalized symmetry rules which
low the treatment of heteronuclear pulse sequences wil
described elsewhere.

The C144
5 sequence described in this paper is not

unique solution for recoupling at high spinning frequenc
As indicated in Table I, a very large number of useful CNn

n

symmetries exist, and each symmetry permits great freed
in the choice of the elemental cycle. In addition, it is possi
to construct sequences with the same interaction frame s
metry as CNn

n sequences, but with elements consisting
z-rotations instead of cycles. This additional degree of fr
dom has been discussed in the context of TPP
decoupling57 in Ref. 35. The results presented here should
regarded as defining a framework guiding the search for
timal sequences. In the end, the choice of the basic elem
and the type of symmetry must be guided by more deta
considerations such as the particular form of the recoup
Hamiltonian, and the properties of the higher-order term
The solutions discussed in this paper is only one of a h
number of possibilities. Furthermore, new symmetry clas
with different selection rules have recently been describe40

Two-dimensional spectroscopy of multiple-spin syste
at high spinning frequencies is expected to become incr
ingly important, especially in the solid-state NMR of heavi
labeled biomolecules. The good agreement of the experim
tal three-spin dynamics with the theoretical curves, as sho
in Fig. 11, bodes well for the precise control of spin dyna
ics in such experiments.
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APPENDIX A: SUPERCYCLED C Nn
n SEQUENCES

The spin Hamiltonian in the presence of a rotor synch
nized rf pulse sequence is given by

H~ t !5H int~ t !1H rf~ t !, ~A1!

where the internal spin HamiltonianH int(t) is time depen-
dent because of the sample rotation, while the rf spin Ham
tonianH rf(t) is time dependent because of the modulation
the rf fields. It is convenient to analyze the spin dynamics
the interaction frame of the rf field, i.e.,

H̃~ t !5W~ t !†H int~ t !W~ t !, ~A2!

where the frame transformation operatorW(t) solves the
equations

d

dt
W~ t !52 iH rf ~ t !W~ t !, ~A3!

W~ t0!51. ~A4!

These equations maintain a notational distinction betw
operators which connect states at two different time po
~‘‘propagators’’! and those that depend on one time poin60

The propagator under the interaction frame Hamiltonian o
the durationT of the pulse sequence~starting at time point
t0! is expressed in terms of an effective Hamiltonian

Ũ~T1t0,t0!5exp$2 iH̄ T%, ~A5!

whereH̄ is usually approximated as a truncated Magnus
pansion

H̄>H̄ ~1!1H̄ ~2! ~A6!

with

H̄ ~1!5T21E
t0

t01T
dt H̃~ t !, ~A7!

H̄ ~2!5~2iT !21E
t0

t01T
dt8E

t0

t8
dt@H̃~ t8!,H̃~ t !#. ~A8!

The internal part of the spin Hamiltonian may be expres
using terms with different spherical rankl for rotations of
the spin polarizations

H int~ t !5(
l

Hl~ t !, ~A9!

whereHl(t) is proportional to the irreducible spherical sp
operatorTl0 . For example, chemical shift terms~both iso-
tropic and anisotropic! have l51, while homonuclear
dipole–dipole coupling terms havel52. The Magnus ex-
pansion terms may then be written

H̄ ~1!5(
l

H̄l
~1! , ~A10!

H̄ ~2!5 (
l2 ,l1

H̄l23l1

~2! , ~A11!

where

H̄l
~1!5T21E

t0

t01T
dt H̃l~ t !, ~A12!
-

l-
f
n

n
ts

r

-

d

H̄l23l1

~2! 5~2iT !21E
t0

t01T
dt8E

t0

t8
dt@H̃l2

~ t8!,H̄l1
~ t !#,

~A13!

and

H̃l~ t !5W~ t !†Hl~ t !W~ t !. ~A14!

The symmetry rules given in Eq.~8! may be used to enginee
sequences with desirable properties forH̄ (1). For example,
the chemical shift anisotropy components ofH̄ (1) vanish for
the symmetries C72

1, C144
5, etc., as given in Table I. It is also

possible to predict the destruction of a large number of cr
terms of the formH̄231

(2) .35 However, the remaining high
order terms cause an undesirable interference betw
dipole–dipole recoupling and chemical shift anisotropy.

In order to see how to eliminate such terms, comp
now two sequences with opposite spin winding numbern,
i.e., CNn

n and CNn
2n . For brevity, these sequences are d

noted (C1) and (C2). The rf spin Hamiltonians for these
two sequences are related through

H rf~C
1)5Rx~p!H rf~C

2)Rx~p!†, ~A15!

whereRx(p)5exp$2ipSx%. This equation assumes that all
phases are reversed in sign between the two sequence
cluding any internal phases within the C elements~this latter
condition is unnecessary if the C elements only contain 0
p phase shifts!. The frame transformation operators for th
two sequences at corresponding points of time are there
related through

W~C1;t !5Rx~p!W~C2;t !Rx~p!†. ~A16!

The interaction frame spin Hamiltonians for an interaction
spin rankl are related by

H̃l~C1;t !5W~C1;t !†Hl~ t !W~C1;t !

5Rx~p!W~C2;t !†Rx~p!†Hl~ t !

3Rx~p!W~C2;t !Rx~p!†

5~21!lRx~p!H̃l~C2;t !Rx~p!†. ~A17!

The last line follows from the transformation property

Rx~p!Tl0Rx~p!†5~21!lTl0 . ~A18!

It follows that the average Hamiltonian terms for the tw
sequences are related by

H̄l
~1!~C1!5~21!lRx~p!H̄l

~1!~C2!Rx~p!†, ~A19!

H̄l23l1

~2! ~C1!5~21!l21l1Rx~p!H̄l23l1

~2! ~C2!Rx~p!†.

~A20!

Equation~A19! shows for example, that two CNn
n sequences

with opposite signs ofn cannot be concatenated without d
stroying the desirableg-encoding of the double-quantum re
coupling.

Now consider a hypothetical situation in which th
CNn

2n sequence is bracketed by two infinitely strong ideap
pulses of phase 0. Denote this bracketed sequence by



’’
Th

de
-
l
r

tio

se
d

is
ca
.
rd

ol

ed

i-
e

he

ed
o

ting
e

ral

t-

Eq.

q.

8553J. Chem. Phys., Vol. 112, No. 19, 15 May 2000 Helical pulse sequences in MAS–NMR
symbol (PC2P). The effect of thep pulse is to rotate the
overall propagator by the anglep around thex axis, which
leads to the relationships:

H̄l
~1!~C1!5~21!lH̄l

~1!~PC2P!, ~A21!

H̄l23l1

~2! ~C1!5~21!l21l1H̄l23l1

~2! ~PC2P!. ~A22!

Now suppose that the CNn
n sequence and the ‘‘bracketed

CNn
2n sequence are concatenated to build a supercycle.

idealized supercycle is denoted (C1PC2P). The first order
average Hamiltonian term for the supercycle is given by

H̄l
~1!~C1PC2P!5 1

2H̄l
~1!~C1!1 1

2H̄l
~1!~PC2P!. ~A23!

This has the property

H̄l
~1!~C1PC2P!5H 0 for l5odd,

H̄l
~1!~C1! for l5even

. ~A24!

It follows that this type of supercycle preserves the first or
average Hamiltonian forl52 terms ~such as dipolar cou
plings!, while destroying l51 terms ~such as chemica
shifts!. These are desirable properties for homonuclear
coupling sequences.

For the second-order term, the corresponding calcula
gives

H̄l23l1

~2! ~C1PC2P!5 1
2 H̄l23l1

~2! ~C1!

2
i

4
@H̄l2

~1!~PC2P!,H̄l1

~1!~C1!#

1 1
2 H̄l23l1

~2! ~PC2P!. ~A25!

For most of the interesting cross terms, the individual
quences are designed so as to eliminate the correspon
H̄l

(1) terms, so that the commutator may be neglected. Th
true, for example, for the cross terms involving the chemi
shift anisotropy, in the case of C72

1 and C144
5 sequences

Under these conditions, the theorem for the second o
cross terms is

H̄l23l1

~2! ~C1PC2P!

5H 0 for l21l15odd,

H̄l23l1

~2! ~C1! for l21l15even.
~A26!

This theorem shows that the second order cross term inv
ing the chemical shift anisotropy~l51! and homonuclear
dipole–dipole coupling~l52! vanishes for the (C1PC2P)
supercycle.

In practice, it is not possible to implement the idealiz
shortp pulses required by the (C1PC2P) supercycle. How-
ever cyclic permutationof a p pulse achieves an approx
mately similar effect.61 A small additional phase shift of th
pulse sequence is used to compensate for the finite time
terval spanned by the permuted element. The symmetry t
rems given in Eqs.~A24! and ~A26! apply only approxi-
mately to supercycles employing cyclically permut
elements, but accurate simulations indicate that the appr
mation is reasonable.
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The residual error terms are reduced further by repea
the entire sequence with ap phase shift, which generates th
SC14 supercycle written in Eq.~12!.

APPENDIX B: SYMMETRIES OF DOUBLE-QUANTUM
SPECTRAL AMPLITUDES

In this appendix, we prove Eqs.~41! and~44!, which are
important for the calculation of double-quantum spect
peak amplitudes.

First consider the properties of the superoperatorV̂,
given by

V̂5exp$2 iHC commt%. ~B1!

Here HC comm is the commutation superoperator of the firs
order average Hamiltonian

HC commuA)5u@H̄ ~1!,A#). ~B2!

The superoperatorV̂ is a ‘‘sandwich superoperator,’’49 with
the property

V̂uA)5uVAV†), ~B3!

where the propagatorV is given by

V5exp$2 i tH̄ ~1!%. ~B4!

The following reasoning may be made:

~AuV̂uB!* 5~AuVBV†!*

5Tr$~A†VBV†!†%

5Tr$VB†V†A%

5Tr$AVB†V†%5~A†uV̂uB†!. ~B5!

Equation~41! follows by applying Eq.~B5!, noting thatSlz
†

5Slz and (Sj
1)†5Sj

2 .
In order to prove Eq.~44!, suppose that an operatorR

exists with the following properties:

RR†51,

RVR†5V†,
~B6!

RAR†5A,

RBR†52B.

The following reasoning may be developed:

~AuV̂uB!* 5~A†uV̂uB†!

5Tr$AVB†V†%

5Tr$RAR†RVR†RBR†RV†R†%

52Tr$AV†BV%

52Tr$BVAV†%52~B†uV̂uA!. ~B7!

This equation establishes the symmetry relationship in
~44!, if the following identifications are madeA5Slz , B
5Sj

6Sk
6 .

It remains to identify an operatorR with the properties in
Eq. ~B6!. If the average Hamiltonian has the form of E
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~17!, and theJ couplings are ignored in Eq.~18!, then the
operator

R5expH 2 i
p

2
SzJ ~B8!

has the appropriate properties.
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