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Symmetry principles in the nuclear magnetic resonance of spinning solids:
Heteronuclear recoupling by generalized Hartmann–Hahn sequences

Andreas Brinkmann and Malcolm H. Levitta)

Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

~Received 18 December 2000; accepted 12 April 2001!

General symmetry principles for rotor-synchronized pulse sequences in magic-angle spinning
solid-state nuclear magnetic resonance are presented. The theory of symmetry-based pulse
sequences usingp pulse elements is presented for the first time. The symmetry theory is extended
to the case of generalized Hartmann–Hahn sequences, in which rotor-synchronized rf irradiation is
applied simultaneously to two isotopic spin species. The symmetry principles lead to heteronuclear
selection rules. The symmetry theory is used to design pulse sequences which implement
heteronuclear dipolar recoupling at the same time as decoupling homonuclear spin–spin
interactions, and which also suppress chemical shift anisotropies. A number of specific pulse
sequences based on these principles are listed. Experimental demonstrations are given of
heteronuclear two-dimensional correlation spectroscopy, heteronuclear multiple-quantum
spectroscopy, and the estimation of internuclear dipolar couplings. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1377031#
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I. INTRODUCTION

The determination of molecular structural parameters
solid-state nuclear magnetic resonance~NMR! has recently
made much progress, with the successful developmen
methods for the accurate determination of internucl
distances1–19 and interbond angles.20–30Many of these meth-
ods are compatible with magic-angle spinning~MAS!,31,32 in
which the sample is rapidly rotated about an axis at
‘‘magic angle’’ tan21& with respect to the static magnet
field in order to achieve good spectral resolution and sig
strength.

Although MAS is an essential component of many re
istic applications of solid-state NMR, it has the disadvanta
of strongly attenuating the effect of geometrically inform
tive spin interactions, such as the direct magnetic dipo
dipole couplings between neighboring nuclear spins. A
result, the techniques for geometry determination often e
ploy recoupling pulse schemes, in which resonant rad
frequency~rf! fields are applied to the nuclear spins, in ord
to suspend the averaging effect of the magic-angle rota
over a defined time interval. This makes it possible to exp
the recoupled spin interactions for the determination of m
lecular geometry, without sacrificing the good sensitivity a
resolution provided by MAS.

There are many different types of recoupling pulse
quences, depending upon the targeted spin interaction33,34

For example, there exists a wide range of pulse sequence
recoupling the direct dipole–dipole interactions betwe
spins of the same isotopic type. These are calledhomo-
nuclear recoupling methods. This article focuses on t
methodology ofheteronuclearrecoupling, in which the mag
netic dipole–dipole interactions between unlike spins are
coupled.

a!Electronic mail: mhl@physc.su.se
3570021-9606/2001/115(1)/357/28/$18.00
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Heteronuclear recoupling methods face a number
methodological challenges associated with the type
nuclear spin system involved and with instrumental limi
tions. For example, it is often desirable to recouple thehet-
eronuclear dipole–dipole interactions, without simult
neously recoupling the homonuclear dipole–dipole
interactions. In addition, it is often desirable that the evo
tion of the nuclear spin system is insensitive to chemi
shift interactions, both isotropic and anisotropic. In a nono
ented sample such as a powder, there are further comp
tions, since the recoupling effect depends in general on
molecular orientation. In most cases it is desirable that
orientation dependence of the recoupling be as weak as
sible, so as to obtain good overall efficiency in a orientatio
ally disordered sample such as a powder. The recoup
methodology should also be robust with respect to deviati
in the amplitude of the applied rf field. In addition, it i
sometimes necessary that the pulse sequences are feas
very high magic-angle spinning frequencies.

The Hartmann–Hahn~HH! method is the archetypica
heteronuclear solid-state NMR method. This early sche
involves the simultaneous application of two unmodulated
fields, each resonant with a different spin species, and w
amplitudes chosen so that the two nutation frequenc
match exactly.35 HH matching allows a transfer of spin po
larization between different spin isotopes, through the h
eronuclear dipolar interaction. Hartmann–Hahn cross po
ization ~HH-CP! is widely employed in solid-state NMR fo
the enhancement of signals from nuclei with low gyroma
netic ratios and is an essential component of high-resolu
NMR in solids.36 The Hartmann–Hahn method was orig
nally developed for static solids but may be used in MA
NMR if the rf field amplitudes are adjusted so that the tw
nutation frequencies differ by a small integer multiple of t
spinning frequency. This is called a HH sideba
© 2001 American Institute of Physics
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TABLE I. The qualitative properties of selected heteronuclear recoupling sequences. A check mark means that the corresponding sequence hascated
property in a first order theoretical description. A cross means it does not have this property.

Single-channel sequences~irradiation atK-spin Larmor frequency!

Sequence Ref.
g encoding
of SK-DD

KK-DD
decoupling

K-CSA
decoupling

K-CSA
insensitivity

K-offset
insensitivity

rf field
compensation

rf field
requirements

R3 1, 2 A 3 3 3 ~A! 3 low
SPI-R3 25 3 3 3 A ~A! A low
REDOR 3, 4 3 3 3 A A A high
C-REDOR 48 3 A 3 A A A low/moderate
T-MREV 28, 29 A ~A! 3 3 A A moderate
R181

7 17 A A 3 3 A A moderate

Two-channel sequences~irradiation atK- andS-spin Larmor frequencies!

HH-CP 35, 36 A 3 A A A 3 moderate
LG-HH-CP
two-channel

18 A ~A! A A 3 3 moderate

symmetry-based
sequences

this paper A A A A A A moderate
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condition.37 The sensitivity of the HH method to experime
tal imperfections may be reduced by sweeping the amplit
of one of the radio-frequency fields so as to pass through
appropriate matching condition.38,76–78

In its original version, the Hartmann–Hahn method do
not decouple the homonuclear interactions. In many ca
this makes the method unsuitable for extracting accurate
lecular structural information. In static solids, homonucle
decoupling may be combined with HH-CP by setting one
both of the rf fields off resonance, so as to satisfy the Le
Goldburg condition.39,92 A sideband version of Lee–
Goldburg Hartmann–Hahn cross polarization~LG-HH-CP!
has been applied to MAS solids, allowing the determinat
of distances between nuclei of different types, even in
presence of strong homonuclear couplings.18,19

A different group of heteronuclear recoupling metho
involves the application of radio-frequency fields to only o
of the spin species. This type of heteronuclear recoup
was first achieved in MAS NMR by setting the amplitude
the rf field so that the nutation frequency matches a sm
integer multiple of the spinning frequency. This is call
rotary resonance recoupling (R3).1,2 It was also suggeste
that the unmodulated rf field could be replaced by discretp
pulses every half rotor period.2,3 Experiments of this kind
were first performed by Gullionet al., and form the basis o
the highly successful REDOR~Rotational Echo Double
Resonance! method.3,4 Numerous applications and exte
sions of REDOR have appeared.40–43

The original version of REDOR employs very strongp
pulses, which are assumed to be very short compared to
sample rotation period. This condition is hard to meet at h
MAS spinning frequencies. Modulated versions of R3 were
suggested for use at high MAS frequencies.44,45 It was dem-
onstrated that in some circumstances REDOR itself functi
quite satisfactorily even under fast MAS conditions.46

Table I summarizes a variety of existing heteronucl
recoupling sequences and displays their qualitative pro
ties. This table assumes that there are two spin species, c
hereS andK. In the case of single-channel pulse sequenc
Downloaded 10 Jul 2001 to 130.237.185.120. Redistribution subject to A
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the rf irradiation is assumed to be resonant with theK spins.
All of the pulse sequences recouple the first-order hete
nuclear direct dipolar interaction~abbreviatedSK-DD!.

The third column in the table indicates whether the
coupledSKdipolar interaction is ‘‘g encoded.’’10 This prop-
erty is explained in more detail below. Briefly,g-encoded
pulse sequences have a lower orientation dependence
non-g-encoded pulse sequences, and as a result gene
function better in a powder sample. The fourth column in
cates whether the homonuclear dipole–dipole interacti
betweenK spins are decoupled. Generally speaking, hom
nuclear decoupling ofK spins is also a desirable propert
since it greatly simplifies the spin dynamics and reduces
approximations that must be made when analyzing the
perimental results. The fifth column indicates whether
pulse sequence effectively removes the chemical shift ani
ropy ~CSA! interactions of theK spins in the first-order av-
erage Hamiltonian.47 The sixth column indicates whether th
evolution of theS spins is insensitive to the CSA of theK
spins. This is a slightly weaker condition than that given
the fifth column, since in some circumstances, commuta
properties cause the evolution of the relevantS-spin coher-
ences to be insensitive to theK-spin CSA, even if that CSA
interaction is not fully decoupled. The seventh column in
cates whether the sequence is compensated for isotr
chemical shift or resonance offsets of theK spins. The eighth
column indicates whether the sequence is compensated f
field amplitude variations. The ninth column indicates t
rough rf field requirements of the sequence. In all cas
these ‘‘judgments’’ are based on first-order average Ham
tonian theory.47 They should be regarded as a provision
basis for discussion, rather than a definitive assessment

With these reservations in mind, all existing sequen
display a mixture of positive and negative qualities. For e
ample, the REDOR sequence3,4 displays an array of robus
features with respect to theK-spin interactions. The sequenc
is well-compensated for rf field errors andK-spin chemical
shifts, both isotropic and anisotropic. However, it has
negative side too. REDOR is notg encoded, which implies
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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that the signal modulations due to the heteronuclearSK in-
teractions are relatively weak in powder samples. In ad
tion, the homonuclear dipolar interactions betweenK spins
are also recoupled. This can cause trouble when the sequ
is applied to strongly interacting spins. REDOR also
couples theK-spin CSA interactions, but this turns out not
be a problem in most applications, since the relevant
coupled interactions commute~see the contrasting marks i
columns 6 and 7!. REDOR was originally designed for wor
at low spinning frequencies and has high rf field requi
ments. However, recent results indicate that REDOR ma
fact be usable even at high MAS frequencies.46

A recent variant of REDOR, called C-REDOR,48

achieves homonuclear decoupling~see Sec. IV below!.
As a second example, consider the sideband L

Goldburg Hartmann–Hahn method.18 In this case the re-
coupled heteronuclear interactions areg encoded, indicating
favorable performance in a powder. The sideband LG-
method also strongly attenuates theK-spin CSA interactions.
However, the decoupling of the homonuclearK-spin DD in-
teractions is expected to be imperfect. The original Le
Goldburg scheme for homonuclear decoupling39 is known to
be relatively poor and has long been superseded by m
accurate schemes in the case of high-resolution pro
spectroscopy.49–54 In addition, the use of LG decoupling i
well-established for static samples, but its performance m
be degraded in rapidly rotating samples, due to interfere
effects between the rf pulse sequence and the MAS rota
For this reason, we have only given the LG-HH method
bracketed tick mark in column 4. In addition, the LG meth
is sensitive toK-spin chemical shifts and rf field amplitud
errors.

The table shows that the REDOR and LG-HH metho
are roughly complementary in their strengths and we
nesses.

A different approach to pulse sequence design expl
symmetry principles for rotor-synchronized rf fields in MA
NMR.17,55 These principles allow the recoupling and deco
pling properties of a wide range of pulse sequences to
assessed, at least to a first approximation, by evaluating
of simple integer inequalities. The results of these inequ
ties may be deduced by a diagrammatic technique with
detailed calculation. In addition, it is possible to identify se
of pulse sequence symmetries that lead to the recoup
properties of interest, at least in a first approximation.

Briefly, the symmetry theory may be applied to tw
broad pulse sequence classes, denoted in general CNn

n and
RNn

n . The meaning of these symbols is explained in de
below. The numbersN, n, andn are small integers, called th
symmetry numbers of the pulse sequence.

So far, the symmetry principles have only been p
sented for the case of rf irradiation on a single rf chann
These single-channel symmetry principles have led to a la
selection of promising pulse sequences for heteronuc
decoupling,17,55 double-quantum homonuclear reco
pling,11,14,17,56zero-quantum homonuclear recoupling,17 and
selection of homonuclearJ-couplings.17,57,58In addition, the
symmetry principles provide insight into a variety of existin
methods, such as REDOR,3,4 RFDR59 and TPPM.60
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The single-channel symmetry principles have also b
applied to the problem of heteronuclear recoupling in
presence of strong homonuclear couplings. For exampl
single-channel heteronuclear recoupling sequence with
symmetry R181

7 was demonstrated.17 The qualitative proper-
ties of this sequence are also given in Table I. As may
seen, the sequence has a number of desirable features
retains an undesirable sensitivity to the CSA of the irradia
K spins. It is difficult to accomplishg-encoded heteronuclea
decoupling with rf irradiation on a single rf channel whi
simultaneously removing the sensitivity of the sequence
theK-spin CSA. The symmetry theory alone does not lead
solutions of this kind.

In this paper the symmetry principles are extended to
case of a heteronuclear spin system exposed to simultan
resonant irradiation on two rf channels. Such sequences
be regarded asgeneralized Hartmann–Hahn methods. We
show that it is possible to design pulse sequences that
sess all of the desirable features in Table I, at least on
level of first-order average Hamiltonian theory. As show
below, the extended symmetry theory leads to a large n
ber of possible solutions. We show experimental results
some of the more promising pulse sequences.

The rest of this paper is organized as follows. In Sec
we present the symmetry theory for single-channel CNn

n and
RNn

n sequences. Much of this work has not been presen
explicitly before. In Sec. III these principles are generaliz
to the case of dual synchronized CNn

n and RNn
n sequences. In

Sec. IV we identify a list of candidate symmetries for th
task of heteronuclear recoupling and present some spe
pulse sequences based on these principles. In Sec. V
show some experimental results, including applications
heteronuclear two-dimensional~2D! correlation spectros-
copy, heteronuclear multiple-quantum NMR, and hete
nuclear distance estimations. The applications and lim
tions of the new pulse sequences are discussed.

II. SINGLE-CHANNEL ROTOR-SYNCHRONIZED PULSE
SEQUENCES

We first consider the case of a rotor-synchronized pu
sequence applied to one rf channel. The symmetry rules
this situation have been described before,17,55but the detailed
theory has not yet been presented for the case of RNn

n se-
quences. The discussion here will establish the notation
lay the groundwork for the two-channel case.

A. Euler angles of the rf rotations

Consider a system of coupledS spins, subjected to me
chanical sample rotation at a fixed frequencyv r about a
fixed axis. The spin Hamiltonian in the presence of a rf pu
sequence is given by

H~ t !5H rf~ t !1H int~ t !, ~1!

where the internal spin HamiltonianH int(t) is time depen-
dent because of the sample rotation, while the rf spin Ham
tonianH rf(t) is time dependent because of the modulation
the rf fields. The rf propagator from a time pointta to a time
point tb is denotedU rf(tb ,ta), and solves the equations
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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d

dt
U rf~ t,ta!52 iH rf~ t !U rf~ t,ta!, ~2!

U rf~ ta ,ta!51. ~3!

Suppose that the rf pulse sequence is initiated at time poit0
0

@see Fig. 1~a!#. The rf propagator from time pointt0
0 up to an

arbitrary time pointt may be expressed in terms of three tim
dependent Euler anglesV(t)5$a(t),b(t),g(t)%, describing
the rotation of the spins induced by the rf field:

U rf~ t,t0
0!5Rz@a~ t !#Ry@b~ t !#Rz@g~ t !#. ~4!

HereRx5exp$2ifSx% is the operator for a rotation of spinsS
through the anglef around the axisx5(x,y,z) in the rotat-
ing frame. If the rf fields are applied at the Larmor frequen
of speciesS, the operatorSx is given by

Sx5(
j

Sj x , ~5!

where the sum is taken over allS spins.
In general, the rf propagator for any rf pulse sequen

may be written in terms of the Euler angles as in Eq.~4!.

FIG. 1. Definitions of rotor synchronized pulse sequences.~a! Pulse se-
quence built up ofN elementsEq , whereq50,1,...,N21. The whole se-
quence spans exactlyn rotational periods. A selection of time points
indicated.~b! One way to implement a CNn

n sequence. The basic elementC

is given by a rf cycle. The CNn
n sequence is composed ofN phase-shifted

cycles.~c! One way to implement a RNn
n sequence. The basic elementR

implements ap rotation about thex axis. The elementR8 is obtained from
R by changing the sign of all phases. The RNn

n sequence is composed o
N/2 phase-alternatingRR8 pairs.
Downloaded 10 Jul 2001 to 130.237.185.120. Redistribution subject to A
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However, in general, the link between the Euler angles
the rf irradiation parameters~pulse flip angles and phases! is
sometimes not obvious.

B. Notation for time points

Consider a general rotor-synchronized pulse sequenc
shown in Fig. 1~a!. The pulse sequence is built ofN ele-
ments, denotedEq , where q50,...,N21. The whole se-
quence spans exactlyn rotational periods. Each elementEq

has the same durationtE5nt r /N, wheret r52p/v r . The
duration of the entire sequence is denotedT5NtE5nt r .

Figure 1~a! defines the convention used for denotin
time points in this paper. The time pointtq

0 defines the instan
at which the elementEq starts. The notationtq defines an
arbitrary time point in the interval@ tq

0,tq11
0 @ , i.e., tq

0<tq

,tq11
0 . The time points are related throughtq5t01qtE .

The notationt0 refers to a time point in the interval@ t0
0,t1

0@ ,
i.e., within the first elementE0 .

We use the notationSq to refer to the rf propagator up to
a general time pointtq within an elementEq , starting from
the beginning of that element. The notationAq refers to the rf
propagator up to a general time pointtq within an element
Eq , accumulated over the whole pulse sequence. The n
tion Eq refers to an rf propagator of one complete elem
Eq :

Sq5U rf~ tq ,tq
0!, ~6!

Aq5U rf~ tq ,t0
0!, ~7!

Eq5U rf~ tq11
0 ,tq

0!. ~8!

These propagators are related through

Aq5SqEq21Eq22¯E0 . ~9!

The Euler anglesVq5$aq ,bq ,gq%5$a(tq),b(tq),g(tq)%
refer to the accumulated rf rotations up to a general ti
point tq within the elementEq :

Aq5Rz~aq!Ry~bq!Rz~gq!. ~10!

C. The basic element

In the sequences to be described, all the elementsEq are
derived in a specified way from a given pulse sequence
duration tE5nt r /N, known as the basic element, and d
noted hereE0. The properties ofE0 depend on the symmetr
class of the pulse sequence and will be described below

In general the basic elementE0 is never actually applied
to the spin system, only the derived elementsEq have that
honor. Nevertheless, it is convenient to denote the rf pro
gators of the basic elementE0 by using the superscript ‘‘0.’’
Figure 1~a! defines the convention used for denoting tim
points inside the basic elementE0. The basic element start
at time point 0 and finishes at time pointtE . The notationt0

defines an arbitrary time point inside the interval@0,tE@ , i.e.,
0<t0,tE . The time pointt0 inside the basic elementE0

and the time pointt0 inside the first elementE0 are related
through

t05t02t0
0. ~11!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The rf field Hamiltonian of sequenceE0 is denotedH rf
0(t)

and the rf propagator under the basic elementE0 is denoted
U rf

0(t0,0). The accumulated propagator underE0 at time
point t0 and the corresponding Euler angles are

S05A05Rz~a0!Ry~b0!Rz~g0!5U rf
0~ t0,0!. ~12!

The propagator under the entire basic elementE0 is denoted

E05U rf
0~tE,0!. ~13!

In generalE0 ~the propagator under the basic element! is not
equal toE0 ~the propagator under the first element in t
pulse sequence!.

D. Definition and implementation of C Nn
n sequences

A general CNn
n sequence on theSspins is defined by the

following time-symmetry relationships for the Euler angl
of the rf propagator at time pointstq :

bq5b0 , gq5g02
2pn

N
q. ~14!

Here q50,1,...,N21 and the duration of each element
tE5nt r /N.

Equation ~14! defines the symmetry class of the CNn
n

sequences, through the three symmetry numbersN, n, andn.
The Euler anglesbq and gq of the rf propagator at time
points separated by a multiple oftE are connected to eac
other by a simple symmetry transformation. Note that
CNn

n symmetry implies no restrictions on the anglesaq .
Figure 1~b! shows one possible construction scheme

CNn
n sequences. The method starts by choosing a basic

mentE0, which has the following propagator,

E05Rx~Zgp!, ~15!

whereZg is an even integer~g stands for ‘‘gerade’’!. This
implies that the basic element returns spins to their ini
states~disregarding a possible sign change!, if all interac-
tions other than that with the rf field are ignored. The ba
element is therefore a cycle in the sense of Haeberlen
Waugh47 and will henceforth be denotedC . Some examples
of C sequences are given below.

As shown in Fig. 1~b!, a CNn
n sequence may be con

structed by concatenatingN cyclic elements, each of which
is phase shifted by 2p/N with respect to the preceding ele
ment, i.e.,

Eq5~C !2pnq/N . ~16!

This implies that the first elementE0 of the CNn
n sequence is

the same as the basic elementC , and hence tha
(a0 ,b0 ,g0)5(a0,b0,g0). In Appendix A we prove that this
procedure generates a CNn

n sequence conforming to Eq.~14!.
The symmetry numbersn andn are called space and sp

winding numbers, respectively, since they define the hel
modulations of the two parts of the Hamiltonian, as d
cussed in Ref. 56.

The choice ofC is free within the constraints of Eq
~15!. For example, the basic rf cycleC could be a simple
360° pulse around thex axis as in the SC14 sequence56 (C

53600), or a composite 360° pulse, as in the original C
Downloaded 10 Jul 2001 to 130.237.185.120. Redistribution subject to A
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sequence11 (C 53600360180), or in the POST-C713 and the
SPC-5 sequences14 (C 59003601802700). Here the standard
notation for rf pulse sequences is used:jf , wherej is the
flip angle ~nutation frequency multiplied by the pulse dur
tion! andf is the rf phase, taking into account the sign of t
gyromagnetic ratio.61,62 The flip angles and the phases a
written in degrees.

There are also other ways of constructing CNn
n se-

quences which satisfy Eq.~14! ~see below!.

E. Definition and implementation of R Nn
n sequences

A general RNn
n sequence is defined by the followin

time-symmetry relationships for the Euler angles of the
propagators:

bq5b01qp, gq5g02
2pn

N
q, ~17!

whereq50,1,...,N21. The duration of each elementEq is
tE5nt r /N, andN, n, andn are integers, called the symme
try numbers of the pulse sequence. There are no restrict
on the Euler angleaq .

Figure 1~c! shows one possible construction scheme
a RNn

n sequence. The method starts by choosing a basic
ment of durationtE . In this case, the rf propagator of th
basic element has the property

E05Rx~Zup!, ~18!

whereZu is an odd integer~u stands for ‘‘ungerade’’!. This
implies that the basic element rotates the spins by an
multiple of p about thex axis in the rotating frame. In this
case the basic element is donatedR, to confirm with stan-
dard notation in heteronuclear decoupling theory.63 The basic
elementR may therefore be a single (p)x pulse, or a com-
posite pulse with the same overall rotation. In general,
basic elementR may contain rf pulses of any possib
phase, but the overall rotation operator must obey Eq.~18!.

The construction principle for RNn
n sequences continue

by deriving a second basic element, denotedR8, which is
related toR by changing the sign of all rf phases. The
propagator underR8 may be derived from that underR by
a p rotation about thex axis:

E085Rx~p!E0Rx~p!†. ~19!

If the basic element contains amplitude modulated rf fie
~i.e., all phase changes are multiplies ofp!, thenR8 andR

are identical. In all other casesR8 and R are different se-
quences. For example, if R5909018009090, then
R8590290180090290.

A RNn
n sequence may be constructed by concatena

N/2 phase-shiftedRR8 pairs as follows:

Eq5H ~R!pn/N for q5even

~R8!2pn/N for q5odd.
~20!

Note that the first elementE0 of a RNn
n sequence is not equa

to the basic elementR. The procedure is illustrated in Fig
1~c!. In Appendix A we prove that this procedure generate
RNn

n sequence conforming to Eq.~17!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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From the definition of RNn
n symmetry @Eq. ~17!#, any

RNn
n sequence is also a C(N/2)n

n sequence, even though i
construction principles are quite different. This implies th
RNn

n symmetry is a stronger version of C(N/2)n
n symmetry.

This property is reflected in the more restrictive select
rules for RNn

n sequences compared to CNn
n sequences~see

below!.

F. Spin interactions

In a system of coupled spinsS the internal spin Hamil-
tonian in Eq.~1! at time pointt may be written

H int~ t !5 (
L,l ,m,l

Hlml0
L ~ t !, ~21!

where the symbolL represents the type of interactio
~chemical shift, spin–spin coupling! and also the indices o
the spins involved in the interaction.

The quantum numbersl, m, andl indicate the symmetry
of the term with respect to rotations of the spin polarizatio
and with respect to spatial rotations of the sample. In gen
the termHlmlm

L (t) transforms as an irreducible spherical te
sor of rankl for spatial rotations and rankl for spin rota-
tions. The components indicesm and m take valuesm
52 l ,2 l 11,...,l for space andm52l,2l11,...,l for
spin. Table II contains a list of interactions in a homonucle
spin system, the corresponding values for the ranksl andl,
and the possible componentsm and m under magic-angle
rotation of the sample. In the high-field approximation t
internal Hamiltonian contains only elements withm50.
Terms withmÞ0 are generated by the applied rf field~see
below!. Because of the sample rotation, the termHlml0

L (t) is
periodically modulated:

Hlml0
L ~ t !5v lm

L exp$ imv r t%Tl0
L ~22!

with the complex amplitudes

v lm
L 5@Alm

L #Rdm0
l ~bRL!exp$2 imaRL

0 %, ~23!

whereaRL
0 denotes the initial rotor position andbRL defines

the angle between the rotor axis and the static magnetic
direction~bRL5arctan& for magic angle spinning!. dm0

l is a
reduced Wigner element. Note thatd00

2 (bRL)50 in the case
of exact MAS.Tlm

L is themth component of the spin tenso
of rank l from interactionL.

TABLE II. Homonuclear spin interactions in a solid rotating at the ma
angle with respect to the external magnetic field, and their properties
respect to spatial and spin rotations. The spatial components withm50
disappear for exact magic-angle spinning, in the casel 52.

Interaction

Space
rank

l

Space
component

m

Spin
rank

l

Spin
component

m

isotropic chemical shift 0 0 1 21, 0, 1
CSA 2 22, 21, 1, 2 1 21, 0, 1
homonuclear isotropicJ

coupling
0 0 0 0

homonuclear dipolar
coupling

2 22, 21, 1,2 2 22,21,0, 1, 2
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L #R defines the rotational properties of the spin inte

action under mechanical rotation of the sample, keeping
external magnetic field fixed. The relevant tensor compon
of rank l is obtained in the rotor fixed frame by transformin
it from the principal axis system as follows:

@Alm
L #R5 (

m9,m8
@Alm9

L
#PDm9m8

l
~VPM

L !Dm8m
l

~VMR!. ~24!

The Euler anglesVPM
L 5$aPM

L ,bPM
L ,gPM

L % describe the rela-
tive orientation of the principal axis frame of the interactio
L and a molecule-fixed frame, and depend on the molec
and electronic structure. The Euler anglesVMR

5$aMR ,bMR ,gMR% relate the molecular frame to a fram
fixed on the rotor, and are random variables in a powder

From Eq.~22! and the definitiontq5t01qtE , the peri-
odic symmetry of the laboratory frame spin interaction ter
for the rotor-synchronized pulse sequence shown in Fig. 1~a!
may be expressed

Hlml0
L ~ tq!5Hlml0

L ~ t0!expH i
2pm

N
qJ . ~25!

G. Interaction frame symmetry

Average Hamiltonian theory47 requires a transformation
of the spin interaction terms into the interaction frame of t
rf field. The interaction frame Hamiltonian at time pointtq

may in general be written

H̃~ tq!5 (
L,l ,m,l,m

H̃ lmlm
L ~ tq!, ~26!

where

H̃ lmlm
L ~ tq!5

Tr$Tlm
L†Aq

†Hlml0
L ~ tq!Aq%

Tr$Tlm
L†Tlm

L %
Tlm

L . ~27!

In this case m takes all possible valuesm52l,
2l11,...,l. The rotation properties of spherical tens
operators64

Rz~2g!Ry~2b!Rz~2a!Tl0
L Rz~a!Ry~b!Rz~g!

5(
m

dm0
l ~2b!exp$ img%Tlm

L ~28!

lead to the following form of the interaction frame terms:

H̃ lmlm
L ~ tq!5dm0

l ~2bq!v lm
L exp$ imgq1 imv r tq%Tlm

L . ~29!

The symmetry of the terms depend on the symmetry of
pulse sequence.

(i) CNn
n sequences: Equations~14! and ~29! may be used to

show that the CNn
n symmetry of the pulse sequence impos

the following periodic symmetry on the interaction fram
terms:

H̃ lmlm
L ~ tq!5H̃ lmlm

L ~ t0!expH i
2pq

N
~mn2mn!J . ~30!

(ii) RNn
n sequences: Equations~17! and ~29! lead to the fol-

lowing symmetry of the interaction frame terms:

th
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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H̃ lmlm
L ~ tq!5H̃ imlm

L ~ t0!expH i
2pq

N
~mn2mn!J dm0

l ~pq!.

~31!

Sincedm0
l (pq)5(21)ql, this symmetry may be written in

the more convenient form

H̃ lmlm
L ~ tq!5H̃ lmlm

L ~ t0!expH i
2pq

N S mn2mn2
lN

2 D J . ~32!

The main difference between the two symmetries is t
the spin rankl appears in Eq.~32!. This has major conse
quences.

H. Average Hamiltonian and selection rules

One may analyze the CNn
n and RNn

n sequences using th
Magnus expansion65 of the effective Hamiltonian in the in
teraction frame:

H̄5H̄ ~1!1H̄ ~2!1H̄ ~3!1¯ , ~33!

where the first two orders65,66 are given by

H̄ ~1!5T21E
t0
0

t0
0
1T

dtH̃~ t !, ~34!

H̄ ~2!5~2iT !21E
t0
0

t0
0
1T

dt8E
t0
0

t8
dt@H̃~ t8!,H̃~ t !#. ~35!

The first order term is given by

H̄ ~1!5 (
L,l ,m,l,m

H̄ lmlm
L , ~36!

where

H̄ lmlm
L 5T21E

t0
0

t0
0
1T

dtH̃lmlm
L ~ t !. ~37!

The second order term may be written in the following wa

H̄ ~2!5 (
L2 ,2,L1 ,1

H̄2;1
L23L1, ~38!

where the vectors1 and 2 represent the sets of quantu
numbers (l 1 ,m1 ,l1 ,m1) and (l 2 ,m2 ,l2 ,m2), respectively.
The termsH̄2;1

L23L1 are given by

H̄2;1
L23L15~2iT !21E

t0
0

t0
0
1T

dt8E
t0
0

t8
dt

3@H̃ l 2m2l2m2

L2 ~ t8!,H̃ l 1m1l1m1

L1 ~ t !#. ~39!

The periodic symmetries given in Eqs.~30! and~32! lead to
selection rules for these average Hamiltonians:

(i) CNn
n sequences: The following selection rules were de

rived in Ref. 55:

H̄ lmlm
L 50 if mn2mnÞNZ, ~40!
Downloaded 10 Jul 2001 to 130.237.185.120. Redistribution subject to A
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H̄2;1
L23L150 if 5

m1n2m1nÞNZ,
AND

m2n2m2nÞNZ
AND

~m21m1!n2~m21m1!nÞNZ,

~41!

whereZ is any integer.

(ii) RNn
n sequences: The selection rules are

H̄ lmlm
L 50 if mn2mnÞ

N

2
Zl , ~42!

H̄2;1
L23L150 if 5

m1n2m1nÞ
N

2
Zl1

AND

m2n2m2nÞ
N

2
Zl2

AND

~m21m1!n2~m21m1!nÞ
N

2
Zl21l1

,

~43!

whereZl indicates any integer with the same parity asl.
Equation~42! may be deduced as follows. From Eq.~32!

and the symmetry arguments given in the appendix of R
55, we get

H̄ lmlm
L 50 if mn2mn2

lN

2
ÞNZ, ~44!

whereZ is an integer. This may be written as

H̄ lmlm
L 50 if mn2mnÞ~2Z1l!

N

2
. ~45!

Now if l is even, then 2Z1l is an even integer, while ifl
is odd 2Z1l is an odd integer. Hence the inequality
equivalent to

H̄ lmlm
L 50 if mn2mnÞ

N

2
Zl , ~46!

whereZl is an integer with the same parity asl ~i.e., if l
5even, thenZl50,62,64,...; if l5odd, thenZl561,
63,65,...!. The second order selection rule Eq.~43! may be
derived by using similar arguments to those in Ref. 55.

The selection rules for C(N/2)n
n sequences are a subs

of the selection rules for RNn
n sequences. This reflects th

fact that the symmetry elements for C(N/2)n
n are a subgroup

of the symmetry elements for RNn
n ~see above!.

In order to elucidate the use of these selection ru
consider the design of ag-encoded homonuclear double
quantum recoupling sequence. A sequence of this type
be generated by imposing the following properties:~i! Terms
with spin rankl52 and spin componentsm562 should be
symmetry allowed in the first order average Hamiltonian.~ii !
The term withm522 should be associated with only on
spatial rotational component.~iii ! All other homonuclear di-
polar terms and all CSA terms should be suppressed. S
tions of the type RNn

n and CNn
n may be found by scanning

through many combinations of symmetry numbersN, n, and
v and testing the conditions~i!, ~ii !, and~iii ! using Eqs.~40!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and ~42!. This search turns up a large number of possi
solutions, including C72

1 ~Ref. 11!, C144
5 ~Ref. 56!, and R142

6

~Ref. 17!.

I. Scaling factors

The magnitude of the symmetry-allowed terms depe
on the pulse sequence. In general, a symmetry-allowed
in the first order effective Hamiltonian has the form

H̄ lmlm
L 5k lmlm@Alm

L #R exp$2 im~aRL
0 2v r t0

0!%Tlm
L . ~47!

Note that the phase ofH̄ lmlm
L depends on the starting tim

point t0
0 of the pulse sequence. The scaling factork lmlm of

the symmetry-allowed term with quantum numbe
( l ,m,l,m) is given by

k lmlm5dm0
l ~bRL!tE

21E
t0
0

t0
0
1tEdt0 dm0

l ~2b0!

3exp$ i @mg01mv r~ t02t0
0!#%. ~48!

The symbolst0 , b0 , andg0 refer to time points and rf Eule
angles within the first pulse sequence elementE0 .

It is convenient to define the scaling factor with resp
to the basic elementE0 upon which the pulse sequence
constructed. The definition depends on whether a CNn

n or
RNn

n sequence is applied:

(i) CNn
n sequences:

k lmlm5dm0
l ~bRL!Kmlm . ~49!

~ii ! RNn
n sequences:

k lmlm5dm0
l ~bRL!expH 2 im

pn

N J Kmlm . ~50!

In both cases the factorsKmlm are defined with respec
to the basic elementE0, according to

Kmlm5tE
21E

0

tE
dt0dm0

l ~2b0!exp$ i ~mg01mv r t
0!%. ~51!

The symbolst0, b0, andg0 refer to time points and rf
Euler angles within the basic elementE0.

The calculation ofKmlm for general basic elementsE0 is
discussed in Appendix B. In the specific case of amplitu
modulated rf fields, the calculation is straightforward. If t
basic elementE0 consists of amplitude-modulated rf field
with phase 0 orp, the Euler angles are given by

b05E
0

t0

dtvnut~ t !, g05
p

2
. ~52!

Herevnut(t) is the rf field amplitude expressed as a nutat
frequency~negative values corresponding to phasep!.

In general, if two symmetries CNn
n and CNn

n8 allow the
same term (l ,m,l,m), then the scaling factork lmlm is the
same for these two pulse sequences, providing the basi

ementsE0 are identical. If two sequences RNn
n and RNn

n8

allow the same term, on the other hand, then the two sca
factorsk lmlm have the same amplitude but differ by a pha
factor, if the basic elements are identical.
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J. Pulse sequence propagators

The effective propagator of the pulse sequence may
approximated using the first and second order approxima
for the effective Hamiltonian. Strictly, the effective Hami
tonians propagates the spin system from the time pointt0

0 to
the time pointt0

01T. However, if the internal spin interac
tions are not too large, the average Hamiltonian is of
found to be a good approximation for intermediate tim
points as well. In this case, the propagators up to time p
tq
0 are given by

(i) CNn
n sequences:

Ū~ tq
0,t0

0!'Rx~qZgp!exp$2 i ~H̄ ~1!1H̄ ~2!!qtE%. ~53!

(ii) RNn
n sequences:

Ū~ tq
0,t0

0!

'Rx~qZup!RzS 2
2pn

N
qDexp$2 i ~H̄ ~1!1H̄ ~2!!qtE%.

~54!

Note that the first and second order average Hami
niansH̄ (1) and H̄ (2) depend on the starting time pointt0

0 of
the pulse sequence.

The results discussed above allow the design of a var
of rotor-synchronized pulse sequences for many differ
purposes is solid state NMR.17,55,56 In the following, these
concepts are generalized to rf fields applied simultaneou
to two rf channels.

III. DUAL ROTOR-SYNCHRONIZED PULSE
SEQUENCES

In the following we discuss a number of different class
of rotor-synchronized rf pulse sequences which are app
simultaneously at the Larmor frequencies of one or two d
ferent spin species, denotedS andK. For example,S andK
may comprise two rare spin species, immersed in a poo
abundant spins, denotedI. One common case isS513C, K
515N, andI 51H. In the following we assume that the abu
dantI spins are decoupled from the rareSandK spins by the
application of a suitably modulated strong rf field at t
I-spin Larmor frequency.

A. Heteronuclear spin interactions

In a system of coupledS and K spins the internal spin
Hamiltonian at time pointt may be written

H int~ t !5 (
L,l ,m,lS ,lK

HlmlS0lK0
L ~ t !, ~55!

where the symbolL represents the type of interactio
~chemical shift, homonuclear spin-spin coupling, hete
nuclear spin–spin coupling! and also the indices of the spin
involved in the interaction. As before, the sum over the p
rameterL runs over the different interactions~homo- and
heteronuclear! as well as over the relevant spin indices. T
termHlmlSmSlKmK

LSK (t) includes both homo- and heteronucle

interactions for theS andK spins:
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. Heteronuclear spin interactions in a solid rotating at the magic angle with respect to the ex
magnetic field, and their properties with respect to spatial and spin rotations. The spatial componentsm
50 disappear for exact magic-angle spinning, in the casel 52.

Interaction

Space
rank

l

Space
component

m

S K

Spin
rank
lS

Spin
component

mS

Spin
rank
lK

Spin
component

mK

heteronuclear
dipolar coupling

2 22, 21, 1, 2 1 21, 0, 1 1 21, 0, 1

heteronuclear
isotropicJ coupling

0 0 1 21, 0, 1 1 21, 0, 1
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HlmlSmS00
L ~ t !5HlmlSmS

LS ~ t !, ~56!

Hlm00lKmK

L ~ t !5HlmlKmK

LK ~ t !, ~57!

HlmlSmSlKmK

LSK ~ t !5 (
LSK ,l ,m,lS ,mS ,lK ,mK

v lm
LSK exp$ imv r t%

3TlSmS

LS TlKmK

LK . ~58!

The sum overLSK is taken over all heteronuclear intera
tions and all relevant heteronuclear spin pairs. The te
HlmlSmSlKmK

LSK (t) transforms as an irreducible spherical tens

of rank l for spatial rotations, ranklS for S-spin rotations,
and ranklK for K-spin rotations. The components indicesm,
mS , and mK have valuesm52 l ,2 l 11,...,l for space,mS

52lS ,2lS11,...,lS for S spins, and mK52lK ,2lK

11,...,lK for K spins. Table III contains a list of hetero
nuclear interactions and the corresponding values for
ranksl, lS , andlK , and componentsm, mS , andmK , under
magic-angle rotation of the sample.

The modulation amplitudesv lm
LSK of the heteronuclea

interactions are written as before as

v lm
LSK5@Alm

LSK#Rdm0
l ~bRL!exp$2 imaRL

0 t%, ~59!

where the amplitudes of the rankl tensor of interactionLSK

may be transformed from the principle axis frame to t
rotor fixed frame through the usual chain of transformatio

@Alm
LSK#R5 (

m8m9
@A

lm9

LSK#PDm9m8
l

~VPM
LSK!Dm8m

l
~VMR!. ~60!

The Euler anglesVPM
LSK orient the principle axis frame of th

heteronuclear interaction with respect to the molecular a
frame.

B. Classification of dual synchronized pulse
sequences

There exist four different possibilities for applying th
CNn

n and RNn
n sequences simultaneously at the Larmor f

quency of theSandK spins~Fig. 2! In each case the numbe
of basic elementsN and the total number of rotor periodsn is
the same in each sequence. However, the phase incre
parametern and the symmetry class C or R may be differe
for the two channels. The basic elementsES

0 and EK
0 may

also be different on the two channels, even if both chann
l 2001 to 130.237.185.120. Redistribution subject to A
m
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employ the same type of symmetry. The spin winding nu
bersn for the S andK spins are denotednS andnK , respec-
tively. The following combinations are possible.

~a! S:CNn
nS,K:CNn

nK. This type of synchronized dual C se

quence is denoted CNn
nS,nK.

~b! S:CNn
nS,K:RNn

nK. This type of mixed C and R se

quence is denoted CRNn
nS,nK.

~c! S:RNn
nS,K:CNn

nK. This type of mixed R and C se

quence is denoted RCNn
nS,nK.

~d! S:RNn
nS,K:RNn

nK. This type of synchronized dual R se

quence is denoted RNn
nS,nK.

The symmetries of the Euler angles under the rf fie
are analogous to those for the single channel ro
synchronized sequences. For example, for a CRNn

nS,nK se-
quence, the rf Euler angles obey the symmetries

bq
S5b0

S , bq
K5b0

K1qp, ~61!

gq
S5g0

S2
2pnS

N
q, gq

K5g0
K2

2pnK

N
q, ~62!

FIG. 2. Possibilities of dual RNn
n and CNn

n sequences in a heteronuclear sp
system composed of speciesS and K. ~a! A CNn

nS ,nK sequence.~b! A
CRNn

nS ,nK sequence.~c! A RCNn
nS ,nK sequence.~d! A RNn

nS ,nK sequence.
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where the rf propagators on the two channels are expre
as

U rf
S~ t,t0

0!5Rz
S@aS~ t !#Ry

S@bS~ t !#Rz
S@gS~ t !#, ~63!

U rf
K~ t,t0

0!5Rz
K@aK~ t !#Ry

K@bK~ t !#Rz
K@gK~ t !#, ~64!

and Rx
S5exp$2ifSx% is the operator for a rotation of allS

spins around the rotating-frame axisx5(x,y,z) through the
anglef. Rx

K5exp$2ifKx% is the correspondingK-spin rota-
tion operator. As usual the notationbq

S indicatesbS(tq),
wheretq is a time point in the interval@ tq

0,tq11
0 #, and simi-

larly for gq
S ,bq

K ,gq
K .

Analogous to the single-channel case, the Euler an
aS

0, bS
0, andgS

0 refer to the accumulatedS-spin rf rotation up
to a time pointt0 within the basic elementES

0, whereas the
Euler anglesaK

0 , bK
0 , andgK

0 refer to the accumulatedK-spin
rf rotation up to a time pointt0 within the basic elementEK

0 .

C. Interaction frame symmetry

As in the single-channel case, the terms of Eq.~55!
maybe transformed into the interaction frame of the two
fields at the Larmor frequencies of theS andK spins:

H̃~ t !5 (
L,l ,m,lS ,mS ,lK ,mK

H̃lmlSmSlKmK

L ~ t !, ~65!

wheremS andmK take all possible values,mS52lS , 2lS

11,..., lS , and mK52lK ,2lK11,...,lK . The terms for
mS5lS50 andmK5lK50 are the same as those defined
the single channel case:

H̃ lmlSmS00
L ~ t !5H̃ lmlSmS

LS ~ t !, ~66!

H̃ lm00lKmK

L ~ t !5H̃ lmlKmK

LK ~ t !. ~67!

The symmetries of the interaction frame terms may be
duced by a straightforward extension of the results given
the previous section. The relevant symmetries are

(i) CNn
nS ,nK sequences:

H̃ lmlSmSlKmK

L ~ tq!

5H̃ lmlSmSlKmK

L ~ t0!expH i
2pq

N
~mn2mSnS2mKnK!J .

~68!

(ii) CRNn
nS ,nK sequences:

H̃ lmlSmSlKmK

L ~ tq!5H̃ lmlSmSlKmK

L ~ t0!expH i
2pq

N S mn2mSnS

2mKnK2
lKN

2 D J . ~69!
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(iii) RCNn
nS ,nK sequences:

H̃ lmlSmSlKmK

L ~ tq!5H̃ lmlSmSlKmK

L ~ t0!expH i
2pq

N S mn2mSnS

2mKnK2
lSN

2 D J . ~70!

(iv) RNn
nS ,nK sequences:

H̃ lmlSmSlKmK

L ~ tq!5H̃ lmlSmSlKmK

L ~ t0!expH i
2pq

N S mn2mSnS

2mKnK2
~lS1lK!N

2 D J . ~71!

D. Average Hamiltonian

The average Hamiltonian terms are given by

H̄ ~1!5 (
L,l ,m,lS ,mS ,lK,mK

H̃lmlSmSlKmK

L , ~72!

where

H̄ lmlSmSlKmK

L 5T21E
t0
0

t0
0
1T

dtH̃lmlSmSlKmK

L ~ t ! ~73!

and

H̄ ~2!5 (
L2 ,2,L1 ,1

H̄2;1
L23L1, ~74!

where the vectors1 and 2 represent the quantum numbe
( l 1,m1,lS1,mS1,lK1,mK1) and (l 2,m2,lS2,mS2,lK2,mK2),
respectively. The termsH̄2;1

L23L1 are given by

H̄2;1
L23L15~2iT !21E

t0
0

t0
0
1T

dt8E
t0
0

t8
dt

3@H̃ l 2m2lS2mS2lK2mK2

L2 ~ t8!,H̃ l 1m1lS1mS1lK1mK1

L1 ~ t !#.

~75!

The relevant symmetries ofH̄ (1) and H̄ (2) for the four dif-
ferent sequence classes are

(i) CNn
nS ,nK sequences:

H̄ lmlSmSlKmK

L 50 if mn2mSnS2mKnKÞNZ, ~76!

H̄2;1
L23L150 if 5

m1n2mS1nS2mK1nKÞNZ
AND

m2n2mS2nS2mK2nKÞNZ
AND

~m21m1!n2~mS21mS1!nS

2~mK21mK1!nKÞNZ.

~77!

(ii) CRNn
nS ,nK sequences:

H̄ lmlSmSlKmK

L 50 if mn2mSnS2mKnKÞ
N

2
ZlK

, ~78!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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H̄2;1
L23L150 if

¦

m1n2mS1nS2mK1nKÞ
N

2
ZlK1

AND

m2n2mS2nS2mK2nKÞ
N

2
ZlK2

AND

~m21m1!n2~mS21mS1!nS

2~mK21mK1!nKÞ
N

2
ZlK21lK1

.

~79!

(iii) RCNn
nS ,nK sequences:

H̄ lmlSmSlKmK

L 50 if mn2mSnS2mKnKÞ
N

2
ZlS

, ~80!

H̄2;1
L23L150 if

¦

m1n2mS1nS2mK1nKÞ
N

2
ZlS1

AND

m2n2mS2nS2mK2nKÞ
N

2
ZlS2

AND

~m21m1!n2~mS21mS1!nS

2~mK21mK1!nKÞ
N

2
ZlS21lS1

.

~81!

(iv) RNn
nS ,nK sequences:

H̄ lmlSmSlKmK

L 50 if mn2mSnS2mKnKÞ
N

2
ZlS1lK

, ~82!

H̄2;1
L23L150

if

¦

m1n2mS1nS2mK1nKÞ
N

2
ZlS11lK1

AND

m2n2mS2nS2mK2nKÞ
N

2
ZlS21lK2

AND

~m21m1!n2~mS21mS1!nS

2~mK21mK1!nKÞ
N

2
ZlS21lS11lK21lK1

.

~83!

The selection rules forH̄ (1) permit a classification of the
pulse sequences on the basis of their recoupling and de
pling properties. The selection rules forH̄ (2) allow the pre-
diction of the number and type of symmetry-allowed high
order terms. These terms often determine the pract
performance of the pulse sequences.55
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E. Scaling factors

The magnitude of the symmetry allowed terms depe
on the pulse sequence. In general, a symmetry allowed t
in the first order effective Hamiltonian has the form

H̄ lmlSmS00
L 5H̄ lmlSmS

LS , ~84!

H̄ lm00lKmK

L 5H̄ lmlKmK

LK , ~85!

H̄ lmlSmSlKmK

L 5k lmlSmSlKmK

SK @Alm
LSK#R exp$2 im~aRL

0 2v r t0
0!%

3TlSmS

LS TlKmK

LK , ~86!

where k lmlSmSlKmK

SK is the scaling factor of the symmetry

allowed term with the quantum numbe
( l ,m,lS ,mS ,lK ,mK) given by

k lmlSmSlKmK

SK 5dm0
l ~bRL!tE

21E
t0
0

t1
0

dt0 dmS0
lS ~2b0

S!dmK0
lK ~2b0

K!

3exp$ i @mSg0
S1mKg0

K1mv r~ t02t0
0!#%. ~87!

The symbolst0 , b0
S , b0

K , g0
S , andg0

K refer to time points
and rf Euler angles within the first pulse sequence eleme

It is convenient to define the scaling factor with respe
to the basic elementsES

0 andEK
0 .

(i) CNn
nS ,nK sequences:

k lmlSmSlKmK

SK 5dm0
l ~bRL!KmlSmSlKmK

SK . ~88!

(ii) CRNn
nS ,nK sequences:

k lmlSmSlKmK

SK 5dm0
l ~bRL!expH 2 imK

pnK

N J KmlSmSlKmK

SK . ~89!

(iii) RCNn
nS ,nK sequences:

k lmlSmSlKmK

SK 5dm0
l ~bRL!expH 2 imS

tnS

N J KmlSmSlKmK

SK . ~90!

(iv) RNn
nS ,nK sequences:

KlmlSmSlKmK

SK 5dm0
l ~bRL!expH 2 i S mS

pnS

N
1mK

pnK

N D J
3KmlSmSlKmK

SK , ~91!

whereKmlSmSlKmK

SK is defined with respect to the basic el

mentsES
0 andEK

0 and is given by

KmlSmSlKmK

SK 5tE
21E

0

tE
dt0dmS0

lS ~2bS
0!dmK0

lK ~2bK
0 !

3exp$ i ~mSgS
01mKgK

0 1mv r t
0!%. ~92!

The symbolst0, bS
0, bK

0 , gS
0, andgK

0 refer to time points and
rf Euler angles within the basic elementsES

0 andEK
0 .

The calculation of the termKmlSmSlKmK

SK for general basic

elementsES
0 andEK

0 is discussed in Appendix B. In the spe
cific case of amplitude modulated rf fields, the calculation
straightforward. If the basic elementsES

0, EK
0 consist of

amplitude-modulated rf fields with phase 0 andp, the Euler
angles are given by
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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bS
05E

0

t0

dtvnut
S ~ t !, bK

0 5E
0

t0

dtvnut
K ~ t !, ~93!

gS
05

p

2
, gK

0 5
p

2
. ~94!

Herevnut
S (t) andvnut

K (t) are the rf field amplitudes expresse
as nutation frequencies~negative values corresponding
phasep!.

F. Pulse sequence propagators

The effective propagator of the pulse sequence may
expressed in terms of the first and second order ave
Hamiltonian terms:

(i) CNn
nS ,nK sequences:

Ū~ tq
0,t0

0!'Rx
S~qZg

Sp!Rx
K~qZg

Kp!exp$2 i ~H̄ ~1!1H̄ ~2!!qtE%.
~95!

(ii) CRNn
nS ,nK sequences:

Ū~ tq
0,t0

0!'Rx
S~qZg

Sp!Rx
K~qZu

Kp!Rz
KS 2

2pnK

N
qD

3exp$2 i ~H̄ ~1!1H̄ ~2!!qtE%. ~96!

(iii) RCNn
nS ,nK sequences:

Ū~ tq
0,t0

0!'Rx
S~qZu

Sp!Rz
SS 2

2pnS

N
qDRx

K~qZg
Kp!

3exp$2 i ~H̄ ~1!1H̄ ~2!!qtE%. ~97!

(iv)
RNn

nS,nK sequences:

Ū~ tq
0,t0

0!'Rx
S~qZu

Sp!Rz
SS 2

2pnS

N
qDRx

K~qZu
Kp!

3Rz
KS 2

2pnK

N
qDexp$2 i ~H̄ ~1!1H̄ ~2!!qtE%,

~98!

whereZg
S ,Zg

K are even integers andZu
S ,Zu

K are odd integers
In the following section these results will be applied

the problem of heteronuclear recoupling of two spin spec

IV. SELECTIVE HETERONUCLEAR RECOUPLING

A. Types of heteronuclear recoupling

There are several different types of average Hami
nians which achieve heteronuclear recoupling. The choic
pulse sequence depends not only on the form of the
coupled interactions but also on the removal of unwan
terms in the average Hamiltonian and on the desirability og
encoding. In this paper we concentrate on the design
g-encoded rf pulse sequences which recouple the het
nuclear dipolar interactions, but which also decouple all
homonuclear dipolar interactions, all isotropic chemic
shifts, and all chemical shift anisotropies. In the followin
we discuss the generation of several possible average Ha
tonians suitable for heteronuclear recoupling. We use
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termgeneralized Hartmann–Hahnsequence to refer to rotor
synchronized heteronuclear recoupling sequences which
volve rf irradiation at the Larmor frequencies of both i
volved spin species.

1. REDOR-type recoupling

One possible form for the recoupled heteronuclear av
age Hamiltonian is as follows:

H̄SK
~1!5(

s,k
vskSszKkz , ~99!

where the sum is taken over all heteronuclear spin pairs
this casemS5mK50. Such an average Hamiltonian is, fo
example, generated by a REDOR sequence applied to on
the spin species.3,4 One advantage of this type of averag
Hamiltonian is that the termsSszKkz commute for different
spin pairs. This means the evolution of the heteronucl
spin system can be described as the superposition of the
lution of isolated spin pairs. One disadvantage of such
Hamiltonian is that it cannot beg encoded because the ter
for (mS ,mK)5(0,0) is always associated with both them
561 components and/or both them562 components. The
lack of g encoding reduces the amplitude of dipolar oscil
tions in powdered samples and makes quantitative dista
measurements more difficult.

Another issue is the possible influence of recoup
homonuclear dipolar interactions and CSA interactions.

If CNn
n or RNn

n sequences are applied on a single rf cha
nel, it is not possible to decouple the CSA interaction of t
irradiated spins at the same time as recoupling the het
nuclear dipolar interactions, since these terms have the s
symmetry properties under rotations of a single spin spec
As a result, any single-channel CNn

n or RNn
n sequence ap-

plied to theK spins necessarily recouples themK50 compo-
nents of theK-spin CSA if it is designed to recouple th
mS5mK50 components of theSK dipolar interactions.
However, these recoupledSK and K-spin CSA interactions
commute, so this particular recoupling effect is relative
harmless.

It is possible to generate a recoupled heteronuclear d
lar Hamiltonian of the form of Eq.~99!, at the same time as
decoupling the homonuclear dipolar interactions of the ir
diated spins. Some suitable single-channel symmetries
R123

1, R123
2, R123

4, R123
5, R164

1, R164
5, R164

7, R205
1, R205

9,
etc. All of these solutions suppress isotropic chemical s
terms in the first order average Hamiltonian, but also
couple the CSA interactions of the irradiated spins, as m
tioned above. In addition, the recoupled heteronuclear d
lar interaction is notg encoded. These solutions may b
regarded as variants of REDOR with fourp pulses per rotor
period instead of two. A similar effect is achieved by th
recently described C-REDOR sequences,48 which are based
on CNn

n symmetries.
The standard REDOR sequence3,4 can also be viewed in

the framework of the RNn
n sequences. For example, th

phases of the 180° pulses in the REDOR sequences
phases 0°, 90°, 0°, 90°, if the XY-4 phase cycle67 is used.
This case is therefore equivalent to four 180° pulses
two rotor periods with the phases245°, 145°, 245°, 145°.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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REDOR together with the XY-4 phase cycle can therefore
viewed as an R42

21 sequence, becausepn/N5245° in this
case. If the XY-8 phase cycle67 is used for the 180° pulses
REDOR is equivalent to the supercycled seque
R42

21R42
1. In the case of the XY-16 phase cycle67 REDOR is

equivalent to the supercycle@R42
21R42

1#0@R42
21R42

1#180.
The symmetry analysis of R42

1 shows that in general a
REDOR sequence applied to theK spins also recouples th
K-spin homonuclear dipolar interactions. Since REDOR c
forms to R44

1 symmetry, the choice of thep pulse element
only effects the scaling factor, in first order average Ham
tonian theory. This explains the successful use of REDOR
high spinning frequencies.46

The two-channel selection rules in Eqs.~76!, ~78!, ~80!,
and ~82! do not give rise to any solutions in which th
mS5mK50 heteronuclear dipolar terms are recoupled, at
same time as all homonuclear dipolar coupling terms
removed. On the other hand, dual sequences do make it
sible to remove all chemical shift anisotropy terms in the fi
order average Hamiltonian at the same time as achievin
heteronuclear dipolar Hamiltonian of the form given in E
~99!. So far we did not explore this class of solutions furth

2. Single-quantum heteronuclear recoupling

Another possible form for the recoupled heteronucl
average Hamiltonian is

H̄SK
~1!5 (

s,K
~vskSszKk

21vsk* SszKk
1!. ~100!

This type of Hamiltonian may be generated by applying RNn
n

sequences to theK-spin species, as discussed in Refs. 17 a
68. However, these symmetries also recouple theK-spin
CSA, and the recoupledK-spin CSA andSKdipolar interac-
tion do not in general commute. Another possibility is to u
dual RNn

nS ,nK sequences, where the chemical shift anisotro
is removed for both spin species in the first order aver
Hamiltonian. Some solutions of this kind are R102

5,2, R83
4,3,

R103
5,3, R143

2,3, and R163
1,3, which all recouple the terms

(m,mS ,mK)5(1,0,1) and~21, 0, 21!. However, these so
lutions all recouple theK-spin homonuclear dipolar interac
tions as well as theSKheteronuclear dipolar interactions. W
did not investigate these sequences further.

3. Double-quantum heteronuclear recoupling

The following heteronuclear recoupled Hamiltonian a
has a favorable form:

H̄SK
~1!5(

s,k
~vskSs

2Kk
21vsk* Ss

1Kk
1!. ~101!

This type of selective recoupling cannot be achieved by
plying an rf pulse sequence to only one of the two s
species.

A dual-channel rotor-synchronized pulse sequence, g
erating ag-encoded average Hamiltonian of the type E
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~101!, is generated by imposing the following properties:~i!
First order average Hamiltonian terms with spin ran
(lS ,lK)5(1,1) and spin components (mS ,mK)5(21,21)
and ~1, 1! should be symmetry allowed.~ii ! The term with
(mS ,mK)5(21,21) should be associated with only on
spatial rotational component, denoted herem8. The term
with (mS ,mK)5(1,1) is therefore associated with the spa
component2m8. ~iii ! All other heteronuclear dipolar inter
action terms, all homonuclear dipolar interaction terms, a
chemical shift anisotropy terms should be suppressed
both spin speciesS and K. Tables IV and V show some
two-channel solutions which fulfill these conditions. All th
symmetries in Tables IV and V represent generalized
sequences which recouple the heteronuclear dipolar te
with (m,mS ,mK)5(1,21,21) and ~21, 1, 1!. There also
exist solutions form562, which are not shown here, be
cause in general these sequences have a smaller scaling
tor k lmlSmSlKmK

SK for the recoupled heteronuclear dipolar i

teractions.

Table IV contains solutions of the type CRNn
nS,nK. All

these symmetries decouple the heteronuclear isotropicJ cou-
pling between the two spin species as well as imposing
eronuclear dipolar recoupling. TheK-spin isotropic chemical
shifts are also removed. Table V contains solutions of

type RNn
nS,nK. All of these symmetries retain th

(m,mS ,mK)5(0,0,0) component of the isotropic heter
nuclear J coupling, as well as decoupling the isotrop
chemical shifts of both spin species.

Figures 3 and 4 explain the operation of R183
7,8 in detail

using space–spin selection diagrams~SSS diagrams! intro-
duced in Ref. 56. For this case the selection rules Eqs.~42!
and ~82! apply.

Figure 3~a! indicates that the symmetryR183
7,8 blocks all

homonuclearK-spin interactions in the first order averag
Hamiltonian. The levels in Fig. 3~a! indicate the total value
of mn2mKnK . The superposition ofmnand2mKnK is bro-
ken into two stages, so as to separate the effects of sp
rotations and spin rotations of theK nuclei. The ‘‘barriers’’
on the right-hand side of each diagram have holes separ
by N units. The positions of the holes are determined by
parity oflK , which corresponds to the inequality in the sym
metry theorem Eq.~42!. For the homonuclear dipolar cou
plings lK is even and therefore the position of each ho
corresponds to an even multiple ofN/2, i.e., 0,618,636,... .
For the chemical shift anisotropylK is odd so that the posi
tion of each hole corresponds to an odd multiple ofN/2, i.e.,
69, 627,... . Pathways which pass through a hole indic
space–spin components which are symmetry allowed in
first order average Hamiltonian. Figure 3~a! shows that R183

8

symmetry for theK spins suppresses allK-spin homonuclear
dipolar coupling components~m5$61,62% and mK5$0,
61,62%! and all K-spin CSA components~m5$61,62%
and mK5$0,61%! in the first order average Hamiltonian
This symmetry also suppresses allK-spin isotropic chemical
shift terms~m50 andmK5$0,61%!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE IV. Inequivalent CRNn
nS ,nK sequences leading tog-encoded heteronuclear double-quantum recoupling, with suppression of all chemical sh

anisotropies and homonuclear dipolar coupling terms. The symmetry-allowed terms are in all cases given by (m,mS ,mK)5$(1,21,21),(21,1,1)%. Se-
quences withN<24, n<9, N/n<7 are shown. If (nS ,nK)5(nS8 ,nK8 ) is a suitable solution, then (nK8 ,nS8) is also a suitable solution with the same
symmetry-allowed terms. Sequences with symmetry-allowed terms given by (m,mS ,mK)5$(1,1,1),(21,21,21)% may be constructed by reversing the sign
of both nS8 andnK8 . All sequences decouple the heteronuclear isotropicJ coupling and remove allK- spin isotropic chemical shift terms.

N n nS nK N n nS nK

14 3 2 2
14 3 25 25

16 3 1 4
16 3 24 27

18 3 21 7
18 3 1 5
18 3 22 8
18 3 2 4
18 3 24 28
18 3 25 27

20 3 21 8
20 3 22 9
20 3 2 5
20 3 25 28

20 4 21 7
20 4 1 5
20 4 23 9
20 4 3 3
20 4 25 29
20 4 27 27

22 4 1 6
22 4 25 210

24 4 21 9
24 4 1 7
24 4 23 11
24 4 3 5
24 4 25 211
24 4 27 29

14 5 1 1
14 5 26 26

16 5 21 4
16 5 24 7

18 5 22 6
18 5 2 2
18 5 23 7
18 5 27 27

22 5 22 8
22 5 2 4
22 5 23 9
22 5 3 3
22 5 27 29
22 5 28 28

24 5 21 8
24 5 1 6
24 5 3 4
24 5 24 11
24 5 26 211
24 5 28 29

16 6 1 1
16 6 27 27

20 6 21 5
20 6 25 9

22 6 22 7
22 6 24 9

16 7 23 4
16 7 24 5

18 7 21 3
18 7 1 1
18 7 26 8
18 7 28 28

20 7 1 2
20 7 22 5
20 7 25 8
20 7 28 29

22 7 21 5
22 7 22 6
22 7 2 2
22 7 25 9
22 7 26 10
22 7 29 29

24 7 21 6
24 7 1 4
24 7 23 8
24 7 24 9
24 7 26 11
24 7 28 211

20 8 21 3
20 8 1 1
20 8 23 5
20 8 25 7
20 8 27 9
20 8 29 29

22 8 1 2
22 8 29 210

14 9 21 21
14 9 6 6

16 9 3 24
16 9 4 25

20 9 23 4
20 9 24 5
20 9 25 6
20 9 26 7

22 9 21 3
22 9 1 1
22 9 23 5
22 9 26 8
22 9 28 10
22 9 210 210

24 9 21 4
24 9 1 2
24 9 22 5
24 9 24 7
24 9 25 8
24 9 27 10
24 9 28 11
24 9 210 211
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TABLE V. Inequivalent RNn
nS ,nK sequences leading tog-encoded heteronuclear double-quantum recoupling, with suppression of all isotropic chemical sh

terms, chemical shift anisotropies, and homonuclear dipolar coupling terms. The symmetry-allowed terms are in all cases given by (m,mS ,mK)5$(1,21,
21),(21,1,1)%. Sequences withN<24, n<9, N/n<7 are shown. If (nS ,nK)5(nS8 ,nK8 ) is a suitable solution, then (nK8 ,nS8) is also a suitable solution with
the same symmetry-allowed terms. Sequences with symmetry-allowed terms given by (m,mS ,mK)5$(1,1,1),(21,21.21)% may be constructed by reversing
the sign of bothnS8 andnK8 . All sequences retain the (m,mS ,mK)5(0,0,0) component of the heteronuclear isotropicJ coupling.

N n nS nK N n nS nK

14 3 2 25

16 3 1 24
16 3 4 27

18 3 21 22
18 3 1 24
18 3 2 25
18 3 4 27
18 3 5 28
18 3 7 8

20 3 21 22
20 3 2 25
20 3 5 28
20 3 8 9

20 4 21 23
20 4 1 25
20 4 3 27
20 4 5 29
20 4 7 9

22 4 1 25
22 4 6 210

24 4 21 3
24 4 1 25
24 4 3 27
24 4 5 29
24 4 7 211
24 4 9 11

14 5 1 26

16 5 21 24
16 5 4 7

18 5 22 23
18 5 2 27
18 5 6 7

22 5 22 23
22 5 2 27
22 5 3 28
22 5 4 29
22 5 8 9

24 5 21 24
24 5 1 26
24 5 3 28
24 5 4 29
24 5 6 211
24 5 8 11

16 6 1 27

20 6 21 25
20 6 5 9

22 6 22 24
22 6 7 9

16 7 23 24
16 7 4 5

18 7 21 26
18 7 1 28
18 7 3 8

20 7 1 28
20 7 22 25
20 7 2 29
20 7 5 8

22 7 21 26
22 7 22 25
22 7 2 29
22 7 5 10
22 7 6 9

24 7 21 26
24 7 1 28
24 7 23 24
24 7 4 211
24 7 6 11
24 7 8 9

20 8 21 27
20 8 1 29
20 8 23 25
20 8 3 9
20 8 5 7

22 8 1 29
22 8 2 210

14 9 1 26

16 9 3 4
16 9 24 25

20 9 23 26
20 9 24 25
20 9 4 7
20 9 5 6

22 9 21 28
22 9 1 210
22 9 23 26
22 9 3 10
22 9 5 8

24 9 21 28
24 9 1 210
24 9 22 27
24 9 2 211
24 9 24 25
24 9 4 11
24 9 5 10
24 9 7 8
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FIG. 3. Space–spin selection diagra
for the dual R183

7,8 sequence.~a! Sup-
pression of all CSA and homonuclea
dipole–dipole coupling component
for the K spins.~b! Suppression of all
CSA and homonuclear dipole–dipol
coupling components for theS spins.
The mirror image pathways stemmin
from m521, m522 have been sup-
pressed for simplicity.
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Figure 3~b! shows the corresponding levels for the to
value of mn2mSnS . This figure shows that the R183

7 sym-
metry for theS spins suppresses allS-spin homonuclear di-
polar coupling components~m5$61,62% and mS5$0,61,
62%! and all S-spin CSA components~m5$61,62% and
mS5$0,61%! in the first order average Hamiltonian. Th
S-spin isotropic chemical shift terms~m50 and mS5$0,
61%! are also suppressed.

Figure 4 shows the selection of heteronuclear coupli
terms by the R183

7,8 sequence. The levels in Fig. 4 indica
the total value of mn2mSnS2mKnK broken into three
stages. The barrier at the right-hand side has holes sepa
by N units, corresponding to Eq.~82!. The position of the
holes is determined by the parity of the sumlS1lK . For
heteronuclear dipolar couplingslS1lK is even and there
fore the holes are placed at even multiples ofN/2, i.e., 0,

FIG. 4. Space–spin selection diagram for the dual R183
7,8 sequence, contin-

ued. Selection of a single heteronuclear double-quantum dipole–di
component, with quantum numbers (m,mS ,mK)5(1,21,21). The mirror
image pathways stemming fromm521, m522 have been suppressed fo
simplicity.
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618, 636,... in this case. Figure 4 shows that only hete
nuclear dipolar components with (m,mS ,mK)5(1,21,21)
are symmetry allowed @and by implication, also
(m,mS ,mK)5(21,1,1)#. The selection of terms withmS

1mK562 indicates heteronuclear double-quantum rec
pling of the nuclear spin system. Furthermore, the fact t
the (mS ,mK)5(21,21) term is associated with only on
spatial rotational component (m51) leads tog encoding of
the recoupled dipolar Hamiltonian. The phase but not
amplitude of the recoupled heteronuclear double-quan
Hamiltonian depends on the Euler anglegMR .

The application of simultaneous C711 or POST-C713 se-
quences achieves this type of heteronuclear recoupling,
also recouples the homonuclear dipolar interactions of b
spin speciesS andK.69

4. Zero-quantum heteronuclear recoupling

Zero-quantum heteronuclear recoupling sequences
vide an average Hamiltonian with the following form:

H̄SK
~1!5(

s,k
~vskSs

2Kk
11vsk* Ss

1Kk
2!. ~102!

Heteronuclear zero-quantum recoupling as in Eq.~102! may
be achieved by changing the sign of eithernS or nK in Tables
IV and V. The correspondingm changes its sign as well. Fo
example, the sequence R143

2,5 recouples the terms
(m,mS ,mK)5$(1,21,1),(21,1,21)%, which corresponds to
heteronuclear zero-quantum recoupling.

No generalized HH sequences were found that acc
plish g-encoded heteronuclear double- and zero-quantum
coupling at the same time.

The symmetry-allowed terms depend on the relat
sense of the rf phase shifts on theS- andK-spins channels. It

le
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Downloaded 10 Ju
TABLE VI. Magnitudes of the scaling factorsk for a selection of RNn
nS ,nK and CRNn

nS ,nK sequences. The
symmetry-allowed terms are shown.m8 is the space component of the symmetry allowed term w
(mS ,mK)5(21,21), as used in Eqs.~103! and ~110!.

Symmetry (m,mS ,mK) m8 RS
RK uku

R227
26,29 ~1,1,1! ~21,21,21! 21 90027090270270900 90027027027090900 0.221

R227
9,6 ~1,21,21! ~21.1,1! 1 901803600180180900 901803600180180900 0.122

R249
8,7 ~1,21,21! ~21,1,1! 1 901803600180180900 901803600180180900 0.114

R249
25,210 ~1,1,1! ~21,21,21! 21 60180300060180 60180300060180 0.093

Symmetry (m,mS ,mK) m8 C S
RK uku

CR207
29,28 ~1,21,21! ~21,1,1! 1 9003601802700 901803600180180900 0.118
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is important to take into account the sign of the gyroma
netic ratiog of the irradiated spin species and the rf mixin
scheme on the spectrometer when implementing the
quences shown here.61,62

B. Heteronuclear double-quantum recoupling
sequences

In the case ofg-encoded heteronuclear double-quantu
recoupling, the first order average Hamiltonian is given
Eq. ~101!. This is provided by generalized HH sequenc
which recouple the heteronuclear double-quantum te
(m,mS ,mK)5$(m8,21,21),(2m8,1,1)%, wherem8 is the
symmetry-allowed space component, equal tom8561 de-
pending on the chosen symmetry. The recoupled throu
space heteronuclear dipolar interaction depends on the
lecular orientation and the starting time point of the du
recoupling sequencest0

0:

vsk~VMR ,t0
0!5bskkeim8~vr t0

0
2aRL

0
2gMR!

3 (
m522

2

d0m
~2!~bPM

sk !dmm8
~2!

~bMR!

3e2 im~gPM
sk

1aMR!, ~103!

wherek corresponds to scaling factork2m81-11-1 in Eq. ~86!.
The magnitudes of the scaling factors for a selection of pu
sequences are listed in Table VI. The Euler anglesVPM

sk

5$aPM
sk ,bPM

sk ,gPM
sk % describe the transformation of each he

eronuclear dipole–dipole coupling from its principal ax
system to a molecule fixed frame. The through-space dip
coupling constant between two spinss andk is given by

bsk52
m0

4p

gsgk\

r sk
3 , ~104!

wherer sk is the spin–spin internuclear distance.
The scaling factor of the recoupled interaction depe

on the choice of the basic elements for the two chann
Generally speaking, it is desirable to choose the basic
ment so as to maximize the scaling factork. At the same it is
desirable to choose a sequence which is robust with res
to chemical shift anisotropies, isotropic chemical shifts, a
rf amplitude errors. In addition the applied rf fields should
minimized. This is particularly important in systems whe
the abundantI spins should be decoupled during the reco
pling sequence. Normally the rf field on theI spins needs to
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be a factor of 3 larger than that on theS and K spins to
achieve good heteronuclear decoupling,12,14 although recent
studies indicate that this requirement might be weakene
higher MAS spinning frequencies.70

In order to identify good candidate sequences
employed a combinatorial approach. We selected a variet
composite pulse elementsE0 which are known to be robus
from experience in other fields.71 For the cyclic element we
used C 59003601802700 . For the p-rotation elements we
consideredR590315904590315, 901802700 , 60180300060180,
90270900909090090270900 , 909090180180909009090 ,
4500270180, 3600270180900 , 901803600180180900 ,
90036090270180, 90027090270270900 . In the case of basic el
ements which are not purely amplitude modulated we a
tested the phase-inverted basic element on one channel~see
example below!. The pulse sequences were tested num
cally on an artificial two-spin system including CSA intera
tions, using all symmetries in Tables IV and V and the
derivatives. Sequences passing preliminary tests were ex
ined further under a variety of conditions, including miss-s
rf fields. A selection of the most promising sequences w
tested experimentally.

The dual sequences R249
8,7 and R227

9,6 with the basic
elementsRS5RK5901803600180180900 proved to be rela-
tively robust with respect to rf amplitude errors, isotrop
chemical shifts, and chemical shift anisotropies. Experim
tal results for these sequences are presented below. In s
lations, the same symmetries performed well with the ba
elementsRS5RK53600270180900 . However, the experi-
mental performance of these sequences was slightly wo
for reasons that are unclear.

The sequence CR207
29,28 with the basic elementsC S

59003601802700 and RK5901803600180180900 or RK

54500270180 also performed well in simulations. The choic
RK54500270180 was found to perform slightly better ex
perimentally.

The sequence R227
26,29 with the basic elementsRS

590027090270270900 and RK590027027027090900 has a
relatively high scaling factor for the recoupled heteronucl
dipolar interactions~see Table VI! but proves rather sensitiv
with respect to isotropic chemical shifts.

Note the importance of the relative sense of the rf ph
shifts on the two channels. For example, the seque
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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R227
26,29 with basic elementRS5RK590027090270270900

only has a scaling factor withuku50.046 and has a muc
worse performance than the similar sequence withRS

590027090270270900 andRK590027027027090900 .
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In order to facilitate implementation of these pulse s
quences, we now give some of them explicitly. The gene
ized HH sequence R249

8,7 with the basic pulse sequence el
mentsRS5RK5901803600180180900 is given by
ds.

riods.
S: [90240 36060 180240 9060 90120 360300 180120 90300]
12

K: [90232.5 36052.5 180232.5 9052.5 90127.5 360307.5 180127.5 90307.5]
12

where the superscript 12 indicates 12 repetitions of the bracketed elements, timed to span a total of nine rotor perio
The generalized HH sequence R227

9,6 with the basic pulse sequence elementsRS5RK5901803600180180900 is given by

S: [90253.64 36073.64 180253.64 9073.64 90106.36 360286.36 180106.36 90286.36]
11

K: [90229.09 36049.09 180229.09 9049.09 90130.91 360310.91 180130.91 90310.91]
11

where the superscript 11 indicates 11 repetitions of the bracketed elements, timed to span a total of seven rotor pe
The generalized HH sequence R227

26,29 with the basic pulse sequence elementsRS590027090270270900 and RK

590027027027090900 is given by

S: [90310.91 27040.91 270220.91 90310.91 9049.09 270319.09 270139.09 9049.09]
11

K: [90286.36 270196.36 27016.36 90286.36 9073.64 270163.64 270343.64 9073.64]
11
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where the superscript 11 indicates 11 repetitions of
bracketed elements, timed to span a total of seven rotor
riods.

V. APPLICATIONS

In this section we demonstrate some different appli
tions of the generalized HH sequences.

A. Heteronuclear correlation spectroscopy

Heteronuclear recoupling sequences may be used to
quire two-dimensional heteronuclear correlation spec
~HETCOR!.72–74 Such spectra correlate the isotropic chem
cal shifts of coupled heteronuclei. Figure 5 shows an app
priate pulse sequence for this purpose. This is appropriate
two spin speciesSandK in the presence of abundant spinsI
with a high gyromagnetic ratio. A common practical case
I 51H; S513C; K515N. The sequence starts with rampe
cross polarization to enhance theK-spin magnetization.38

The transverse magnetization on theK spins is allowed to
evolve for an intervalt1 and is then converted into longitu
dinal magnetization by ap/2 pulse. A generalized HH se
quence is applied to theS and K spins in order to transfe
longitudinal magnetization between the spin species.
pulse sequence diagram in Fig. 5 indicates a RNn

nS ,nK se-
quence: In practice, any of the sequences in Tables IV an
might be used. The transferred longitudinalS-spin magneti-
zation is converted to observable magnetization by ap/2
read pulse and detected in the subsequent period. The t
proportional phase incrementation~TPPI! procedure may be
used for obtaining pure-absorption 2D peak shapes.75 A two-
dimensional data matrixs(t1 ,t2) is complied by acquiring a
set of transients with incrementation of the intervalt1 . The
data matrixs(t1 ,t2) is subjected to a complex Fourier tran
e
e-

-

c-
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-
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or

s

e

V
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form in the t2 dimension, and a cosine Fourier transform
the t1 dimension, in order to obtain the 2D spectru
S(v1 ,v2).

Figure 6 shows an experimental spectrum obtained w
the pulse sequence shown in Fig. 5 on a sample
@98%-U–13C,96% – 99%-U–15N#-L-histidine•HCl•H2O at a
field B059.4 T and a spinning frequency ofv r /2p
514.000 kHz. The sample was purchased from Cambri
Isotope Laboratories and used without further purificatio
The experiments were performed on a Chemagne
Infinity-400 spectrometer using a filled 4 mm zirconia roto

The spectrum in Fig. 6~b! was obtained using a cros
polarization time of 600ms. The recoupling was achieve
using a R249

25,210 sequence, with basic pulse elements giv

FIG. 5. Radio frequency pulse sequence for two-dimensional heteronu
correlation spectroscopy between speciesS and K, in the presence of an
abundant speciesI with high gyromagnetic ratio.
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FIG. 6. ~a! Molecular structure
of L-histidine•HCl. We use the
nomenclature recommended by th
IUPAC ~Ref. 90!. ~b! Experi-
mental two-dimensional heteronuclea
13C–15N correlation spectrum of
@98%-U –13C,96% – 99%-U –15N#-L-
histidine•HCl•H2O at a field of B0

59.4 T and a spinning frequency o
v r /2p514.000 kHz, obtained using
the pulse sequence in Fig. 5. Th
recoupling was achieved using
a R249

25,210 sequence with basic
elements RS5RK560180300060180.
The interval during which the
R-sequence irradiation was applie
was 1.61 ms. Thev1 dimension is the
13C single-quantum dimension
whereas thev2 dimension is the15N
single-quantum dimension. The as
signment of the peaks to the molecula
sites is indicated. The sense of the fr
quency axes respects the signs of t
gyromagnetic ratios~Refs. 61 and 62!.
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by RS5RK560180300060180. In total qmix560 basic ele-
ments were used, leading to a total mixing interval oftmix

51.61 ms. The evolution intervalt1 was incremented in
steps of 5ms. Continuous-wave proton decoupling was us
during the R sequences with a proton nutation frequenc
119 kHz. TPPM decoupling60 with a proton nutation fre-
quency of 83 kHz was used during the evolution intervalt1

and the data acquisition. The signal in thet1 dimension was
apodized with a cos2 function and converted into the fre
quency domain using a cosine transform.

The experimental 2D spectrum in Fig. 5 allows the
rectly bonded15N–13C connectivities to be traced. The a
signment of the13C and15N spectra may be completed usin
a double-quantum13C spectrum of the same sample, o
tained under identical conditions, as shown in Fig. 7. T
spectrum was obtained with the modified SC14 pu
sequence56 described in Appendix C. The two spectra
Figs. 6~b! and 7 may be used to completely assign the13C
and 15N peaks to the molecular sites, without any exter
Downloaded 10 Jul 2001 to 130.237.185.120. Redistribution subject to A
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knowledge other than the molecular structure. The ass
ments of the peaks are indicated in the figures.

We have also obtained similar heteronuclear correlat
spectra to that shown in Fig. 6~b! using the adiabatic cross
polarization method.76–78 In principle, the pulse sequence
described here should be less susceptible to interference
homonuclear couplings. However, so far we have not b
able to demonstrate this advantage decisively.

B. Heteronuclear double-quantum oscillations

Figure 8 shows a rf pulse sequence for passingS- and
K-spin signals through heteronuclear multiple-quantum
herence. The sequence starts with two successive ram
cross-polarization sequences to enhance theS- and K-spin
magnetizations. The followingp/2 pulses on both theS and
K spins convert the cross-polarized transverse magne
tions into longitudinal magnetizations. The ramped cro
polarization field and thep/2 pulse on theS-spin channel
ar

e-
FIG. 7. Experimental two-dimensional homonucle
double-quantum 13C spectrum of @98%-U–13C,
96% – 99%-U–15N#-L-histidine•HCl•H2O at a field of
B059.4 T and a spinning frequency ofv r /2p
514.000 kHz, obtained using a modified SC14 s
quence, as described in Appendix C.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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have the phasesFprep
S and Fprep

S 2p/2, respectively, where
Fprep

S is the overall rf phase of the preparation interval for t
S spins. A similar phaseFprep

K applies to theK-spin prepara-
tion.

The heteronuclear double-quantum recoupling seque
of durationtex converts the sum longitudinal magnetizatio
into heteronuclear~62!-quantum coherence. The excitatio
part of the sequence consists ofqex basic elements, whereqex

is an even integer. The excitation interval is therefore giv
by tex5qextE. The overall phase of the excitation block
denotedFex

S for the S spins andFex
K for the K spins. For the

experiments described in this section, there is no inte
between the excitation and reconversion pulse sequenct1

50.
The excited double-quantum coherences are conve

into longitudinal magnetization by applying otherqre basic
elements. The reconversion block has durationt re5qretE

and overall phaseF re
S for theSspins and phaseF re

K for theK
spins. The longitudinal magnetization created by the rec
version sequence is converted into observable magnetiza
by a p/2 read pulse, whose phase is denotedF read

S .
The complexS-spin NMR signal is detected in the sub

sequent period using a rf receiver phaseF rec
S and postdigiti-

zation phase shiftFdig
S .61

The pulse sequence phases are cycled in order to s
signals passing through heteronuclear double-quantum
herence. The phase-cycles are conveniently specified a
braically using the transient countermt50,1,2,..., which is
incremented on every acquired transient. The follow
phase cycles are constructed according to the procedu
Ref. 79.

In the case of isolatedS2K spin pairs a relatively shor
phase cycle may be used since homonuclear multi
quantum coherence cannot be excited. In this case and iqex

is an even integer, the 16-step phase cycle for dual RNn
nS ,nK

and CRNn
nS ,nK is specified by

FIG. 8. Radio frequency pulse sequence for passingS-spin signals through
heteronuclear double-quantum coherence. The phasesFprep

S , Fprep
K , Fex

S ,
Fex

K , F re
S , F re

K , andF read
S refer to overall rf phases of the pulse sequen

blocks. The rf receiver phase during signal detection is denotedF rec
S and the

postdigitization phase byFdig
S .
Downloaded 10 Jul 2001 to 130.237.185.120. Redistribution subject to A
ce

n

al

ed

n-
on

ect
o-
e-

g
in

e-

Fprep
S 5Fprep

K 5Fex
S 5Fex

K 50,

F re
S5

p

2
1

p

2
mt1F re

0,S ,

F re
K5

p

2
1

p

2
mt ,

~105!

F read
S 5

p

2
1

p

2
mt1

p

2
floorS mt

4 D ,

F rec
S 50,

Fdig
S 5

p

2
floorS mt

4 D2
p

2
mt ,

where the function floor~x! returns the largest integer no
greater thanx.

The phaseF re
0,S depends on whether a C or a Rsequence

is used on theS spins. For RNn
nS ,nK, this phase is

F re
0,S50. ~106!

For CRNn
nS ,nK sequences, this phase is given by

F re
0,S5

2pnS

N
qex. ~107!

In practice this means that the phase is continuously in
mented during the C sequence on theS spins under the in-
tervalstex andt re.

In the case of a multipleS- andK-spin system, a longe
phase cycle is necessary in order to suppress signals pa
through homonuclear double-quantum coherences. Ifqex is
an even integer, the appropriate 32-step phase cycle is s
fied through

Fprep
S 5Fprep

K 5Fex
S 5Fex

K 50,

F re
S5

p

2
1

p

2
mt1p floorS mt

16D1F re
0,S ,

F re
K5

p

2
1

p

2
mt ,

~108!

F read
S 5

p

2
1

p

2
mt1

p

2
floorS mt

4 D ,

F rec
S 50,

Fdig
S 5

p

2
floorS mt

4 D2p floorS mt

16D2
p

2
mt ,

where the transient counter takes the valuesmt50,1,...,31.
The phaseF re

0,S is specified in Eqs.~106! and ~107!.
Experimental results for 10%@2-13C,15N#-glycine at

B059.4 T are shown in Fig. 9. A sample of@2-13C,15N#-
glycine was purchased from Cambridge Isotope Labora
ries, cocrystallized with natural abundance glycine in a m
lecular ratio of 1:9 and used without further purification. T
experiments were performed on a Chemagnetics Infinity-
spectrometer using a filled 4 mm zirconia rotor.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Figure 9 shows the experimental heteronuclear dou
quantum filtering~2QF! efficiencies for a variety of pulse
sequences, plotted as a function of the pulse sequence i
val tex1t re. In all cases the efficiencies were estimated
dividing the 13C peak integrals obtained by the pulse s
quence in Fig. 8 by the peak integrals in a simple ramp
cross-polarization experiment, using the same number of
quired transients. In the left-hand column of Fig. 9@plots
~a!–~d!#, the excitation and reconversion intervalstex andt re

were kept equal to each other, both being incremented a

FIG. 9. Symbols: Experimental double-quantum filtered efficiencies
tained on 10% labeled@2-13C,15N#-glycine with the pulse sequence show
in Fig. 8 as a function oftex1t re . ~a!–~d! The excitation and reconversio
intervals are incremented simultaneously (tex5t re). ~e!–~h! The excitation
interval was fixed, whilet re was varied.~a!–~d! The following symmetries
and basic pulse sequence elements were used.~a! and ~e!: R249

8,7 with RS

5RK5901803600180180900 ; ~b! and ~f!: R227
9,6 with RS5RK

5901803600180180900 ; ~c! and~g!: CR207
29,28 with C S59003601802700 and

RK54500270180; and ~d! and ~h!: R227
26,29 with RS590027090270270900

and RK590027027027090900 . The following values oftex were used:~e!
2.250 ms;~f! 2.212 ms;~g! 1.983 ms; and~h! 1.273 ms. Solid lines: accurat
numerical simulations of the amplitudes, multiplied by an exponential fu
tion and a vertical scale factor. The following results were obtained for
heteronuclear dipolar coupling constants, the fitted relaxation time c
stants, and the factorsf: ~a! and ~e!: (bSK/2p,TR , f )5(888 Hz,14.1 ms,
0.51); ~b! and ~f!: (bSK/2p,TR , f )5(908 Hz,16.2 ms,0.52);~c! and ~g!:
(bSK/2p,TR , f )5(904 Hz,11.6 ms,0.46); and~d! and ~h!: (bSK/2p,TR , f )
5(916 Hz,11.9 ms,0.5). Dashed lines: average Hamiltonian simulation
noring the heteronuclearJ coupling, using the same values of the paramet
bSK/2p,T, f as for the solid line curves. The dashed lines and solid lines
nearly superimposed. Powder averaging was performed using 1154 ori
tions VMR , chosen according to the ZCW scheme~Ref. 91!.
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same time~the ‘‘symmetric procedure’’!. In the right-hand
column @plots ~e!–~h!#, the excitation interval giving the
maximum efficiency for the casetex5t re was first deter-
mined. The excitation interval was fixed to this value wh
the reconversion interval was incremented, starting att re

50. In general, the method in the right column~the ‘‘asym-
metric procedure’’! provides larger amplitude modulations.80

Figures 9~a! and 9~e! illustrate the performance of R249
8,7

with the basic elementsRS5RK5901803600180180900 . The
results were obtained at a spinning frequency ofv r /2p
56.000 kHz, using a cross-polarization contact time of 1
ms for 13C and 3 ms for15N. Continuous wave decoupling
was used with the proton nutation frequencies 114 and
kHz during the R sequences and acquisition, respectiv
The S- and K-spin nutation frequencies during the R249

8,7

sequence were both 32 kHz.
Figures 9~b! and 9~f! were obtained with the sequenc

R227
9,6, again using the basic elementsRS5RK

5901803600180180900 . The S- and K-spin nutation frequen-
cies during the R227

9,6 sequence were both 37.7 kHz. Th
other experimental conditions were the same as in Figs.~a!
and 9~e!. The experimental result clearly shows that this s
quence has a slightly larger scaling factor than R249

8,7 ~see
Table VI!.

Figures 9~c! and 9~g! demonstrate the performance of
mixed C/R sequence. In this case the symmetry CR207

29,28

was used with the basic elementsC S59003601802700 and
RK54500270180. The S- and K-spin nutation frequencies
during the CR207

29,28 sequence were both 34.3 kHz. Th
other experimental conditions were as in Figs. 9~a! and 9~e!.

Figures 9~d! and 9~h! illustrate the sequence R227
26,29

with the elements RS590027090270270900 and RK

590027027027090900 . The results were obtained at a spi
ning frequency of v r /2p55.500 kHz, using a cross
polarization contact time of 800ms for 13C and 2.4 ms for
15N. Continuous wave decoupling was used with the pro
nutation frequencies 109 and 69 kHz during the R sequen
and acquisition, respectively. TheS- andK-spin nutation fre-
quencies during the R227

26,29 sequence were both 34.6 kH
The rapid oscillations in these plots confirm that this cho
of basic elements provides a large scaling factor for the
coupled heteronuclear interactions, as shown in Table V

The solid lines in Fig. 9 are the results of accurate tw
spin simulations, using the spin interaction parameters gi
in Ref. 81. In each case the hetronuclear dipolar coup
constant was varied to obtain the best fit between numer
simulations and experimental results. A multiplicative fac
f exp$2(tex1t re)/TR% was applied to the numerical simula
tions to take into account the relaxation during the rec
pling sequence and the fact that the cross-polarization pr
dure does not provide equalS- andK-spin magnetizations. In
practice, the fit of the heteronuclear dipolar coupling co
stant is insensitive to the values off and the relaxation time
constantTR .

The best fits for the heteronuclear dipolar coupling co
stants are as follows:~a! and~e! 888 Hz,~b! and~f! 908 Hz,
~c! and ~g! 904 Hz, and~d! and ~h! 916 Hz. In all cases we
obtain dipolar coupling constants in the range 902614 Hz.
This is in good agreement with the coupling constant of 8
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FIG. 10. Experimental two-dimensional hetero
nuclear double-quantum13C–15N spectra of @98%-
U–13C,96% – 99%-U–15N#-L-histidine•HCl•H2O at a
field of B059.4 T and a spinning frequency ofv r /2p
514.000 kHz, obtained using the pulse sequence
Fig. 8. The recoupling was achieved using a R249

25,210

sequence with basic pulse elementsRS5RK

560180300060180. The excitation and reconversio
intervals are given bytex51232.1ms and ~a! t re

5589.3ms and~b! t re52464.3ms. Thev1 dimension
is the 13C single-quantum dimension, whereas thev2

dimension is the13C–15N double-quantum dimension.
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Hz determined by recent REDOR studies at different sam
spinning frequencies.46 The distance between the C and
nuclei estimated by neutron diffraction is 0.149 nm,82 which
corresponds to a heteronuclear dipolar coupling constan
926 Hz. The discrepancy between NMR and neutron d
tance estimations is presumably due to motional averagin
the dipolar coupling constant, as well asJ anisotropy.

The dashed lines in Fig. 9 are results of simulations
ing the average Hamiltonian Eq.~101! with the recoupled
heteronuclear dipolar interaction Eq.~103!. In all cases the
same factorf and exponential decay function were used
for the numerical exact simulations. The average Ham
tonian simulations agree very well with the numerical ex
simulations. The good agreement may be attributed to
moderate chemical shift anisotropy of the13Ca site. For
larger CSA values one would expect larger deviations.

Further simulations~not shown! indicate that the effec
of the heteronuclear isotropicJ coupling is negligible.

C. Heteronuclear multiple-quantum spectroscopy

The pulse sequence shown in Fig. 8 may also be use
produce two-dimensional heteronuclear multiple-quant
spectra, in which the frequencies of the heteronuclear~62!-
quantum coherences are measured in a second frequenc
mension. This is done by fixing the intervalstex andt re and
by incrementing the intervalt1 . The phase cycle must als
be adjusted~see below!.

Figure 10 shows experimental two-dimensional hete
nuclear double-quantum spectra of@98%-U–13C,
96% – 99%-U–15N#-L-histidine•HCl•H2O at B059.4 T and
a spinning frequency ofv r /2p514.000 kHz. In both cases
the heteronuclear recoupling was achieved using a R249

25,210

sequence, with the basic elements given byRS5RK
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560180300060180. The excitation part of the sequence w
the same for the two experiments, and consisted ofqex546
basic elements, corresponding to an excitation interval
tex51232.1ms.

In Fig. 10~a! the reconversion sequence consisted
qre522 basic elements, corresponding to a reconversion
terval of t re5589.3ms. In Fig. 10~b! the reconversion se
quence consisted ofqre592 basic elements, corresponding
a reconversion interval oft re52464.3ms.

These two-dimensional spectra display the frequenc
of heteronuclear double-quantum coherences in thev1 di-
mension and the frequencies of single-quantum13C coher-
ences in thev2 dimension. The double-quantum frequenci
are equal to the sums of the isotropic chemical shift frequ
cies of the13C and15N nuclei, measured in Hz, taking int
account the signs of the gyromagnetic ratios.61,62 In the
present case ofS513C and K515N, the two spin species
have opposite signs for their gyromagnetic ratios. In this c
the positions of double-quantum peaks in thev1 dimension
when specified in ppm are given by thedifferenceof the
chemical shifts of the two spins specified in ppm.

Figure 10~a! shows the two-dimensional heteronucle
double-quantum spectrum for a relatively short reconvers
interval (t re5589.3ms). In this case, the only peaks of sig
nificant amplitude arise from coherence transfer betwee
double-quantum coherence involving neighboring spinsSj

andKl into a single-quantum coherence of spinSj , which is
a member of the same pair. These have been calleddirect
peaks.56

In Fig. 10~b! an extended reconversion interval oft re

52464.3ms is used. A greater variety of peaks is now o
served, some of which are negative. These additional pe
are due to a variety of processes. For example, double q
tum coherence may be excited between spinsSj and Kl
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 11. Average Hamiltonian simulations of the spectral amplitudes of the 12 possible two-dimensional heteronuclear double-quantum spectral pks of the
heteronuclear spin system in the imidazole ring of@98%-U–13C,96% – 99%-U–15N#-L-histidine•HCl•H2O as a function of the reconversion intervalt re . The
excitation interval wastex51232.1ms. The plots show the amplitudes of the spectral peaks corresponding to transfer processes from a heter
double-quantum coherence (Sj ,Kl) to a single quantum coherenceSk , denoted (Sj ,Kl)→Sk : ~a! (d2 ,e2)→e1 ; ~b! (d2 ,e2)→g; ~c! (d2 ,e2)→d2 ; ~d!
(g,d1)→e1 ; ~e! (g,d1)→g; ~f! (g,d1)→d2 ; ~g! (e1 ,d1)→e1 ; ~h! (e1 ,d1)→g; ~i! (e1 ,d1)→d2 ; ~j! (e1 ,e2)→e1 ; ~k! (e1 ,e2)→g; and ~l! (e1 ,e2)
→d2 . Solid lines: Simulations using the average Hamiltonian of the recoupled heteronuclear dipolar interactions, Eqs.~101! and~103!, as well as a 70 HzJ
coupling between theg andd2 carbon sites, Eq.~109!. Dashed lines: average Hamiltonian simulations without theg2d2 J coupling. Vertical dashed lines
indicate the reconversion intervalst re used in Fig. 10,t re5589.3ms andt re52464.3ms. The geometry of the spin system was obtained from Ref. 83. Pow
averaging was performed using 1154 orientationsVMR , chosen according to the ZCW scheme~Ref. 91!.
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which are not directly bonded but are located some dista
away from each other. The extended reconversion interv
able to reconvert these distant double-quantum cohere
into single-quantum coherence of spinSj in the same pair.
This is called adistant direct process. In addition, the
double-quantum coherence between spinsSj andKl may be
converted into single-quantum coherence of a third spinSk ,
if the spinSk also has a heteronuclear coupling toKl . This
transfer is called anindirect process. In addition, the hetero-
nuclear coherence between spinsSj andKl may be converted
into single-quantum coherence of a third spinSk , if Sj and
Sk are linked by a network of homonuclearJ couplings.

A close examination of the spectrum in Fig. 10~b! indi-
cates multiple origins for the new cross peaks. For exam
there are negative cross peaks between the double-qua
coherences of the13C–15N pair (d2 ,e2) with the 13C single-
quantum coherences of sitee1 . This cross peak arises b
indirect transfer through the two recoupled heteronucl
spin–spin interactions betweend2 and e2 and betweene1

and e2 . Similar processes account for the negative cr
peaks between (g,d1) ande1 , between (e1 ,d1) andg, and
also between (e1 ,e2) and d2 . Indeed allpossibleindirect
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cross peaks caused by recoupled heteronuclear interac
between neighboring nuclei appear in Fig. 10~b!.

In addition there are strong positive indirect doub
quantum peaks between (d2 ,e2) andg, and between (g,d1)
and d2 . These peaks are due to homonuclearJ couplings
~see below!.

We examined the spin dynamics in the heteronucl
five-spin system of the imidazole ring by average Ham
tonian simulations. Figure 11 shows the two-dimensio
heteronuclear double-quantum peak amplitudes for the
possible spectral peaks of the imidazole ring as a function
the reconversion intervalt re. The dashed lines correspond
the case where the average Hamiltonian includes only
recoupled heteronuclear dipolar interactions, Eqs.~101! and
~103!. The molecular geometry was obtained from Ref. 8
The solid lines correspond to the case where the ho
nuclearJ coupling of around 70 Hz between theg and d2

carbon sites was also included:

H jk
J 52pJjk

isoSj "Sk . ~109!

This term has the symmetry numbers (l ,m,lS ,mS)
5(0,0,0,0) and is therefore symmetry allowed under a
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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CNn
n or RNn

n sequence. The vertical lines in Fig. 11 indica
the two reconversion intervalst re for which the experimenta
two-dimensional spectra are shown in Fig. 10. These si
lations show clearly that the homonuclear isotropicJ cou-
pling has a considerable effect on the peak amplitudes
larger values oft re. Figures 11~c!, 11~e!, 11~g!, and 11~j!
show the peak amplitudes of the direct peaks observabl
Fig. 10~a!. Figures 11~a!, 11~d!, 11~h!, and 11~l! show the
peak amplitudes for the negative indirect peaks in Fig. 10~b!.
Figures 11~b! and 11~f! correspond to the positive indirec
peaks in Fig. 10~b!, which cannot be explained by pure
recoupled heteronuclear interactions~dashed lines!. If the
homonuclearJ coupling between theg andd2 carbon site is
considered, these simulations explain the occurrence of
positive indirect peaks in Fig. 10~b! ~solid lines!. The homo-
nuclearJ coupling has such a strong effect because it has
same order of magnitude as the scaled recoupled he
nuclear dipolar interaction (ukbSKu'84 Hz). The weak posi-
tive indirect double-quantum peaks between (a,NH3) and
CO may be attributed to the homonuclearJ coupling be-
tween thea and CO carbon sites.

Another interesting feature visible in Fig. 10 is that t
spectrum of Fig. 10~a! appears to be ‘‘cleaner’’ than that i
Fig. 6. The ratio of the direct peaks to the indirect peaks
higher in the heteronuclear multiple-quantum spectrum. T
effect may be understood using the results for recoup
multiple-spin dynamics presented in Ref. 56. For short
conversion intervals, the amplitudes of the indirect peaks
multiple-quantum filtered spectra are proportional to
cube of the coupling constants multiplied by the reconv
sion interval, while the amplitudes in conventional corre
tion spectra are proportional to the first power of the sa
quantity. It is therefore much easier to suppress long-ra
peaks and indirect peaks in multiple-quantum and multip
quantum-filtered spectra. This property should be useful
the spectral methodology of assignment in the solid s
NMR of multiply labeled materials.

The spectra shown in Fig. 10 were obtained on a C
magnetics Infinity-400 spectrometer using a filled 4 mm z
conia rotor. The two spectra were obtained using a cr
polarization interval of 2 ms. The evolution intervalt1 was
incremented in steps of 25ms. Continuous-wave proton de
coupling was used during the recoupling sequence wit
proton nutation frequency of 125 kHz. TPPM decoupli
was used during the evolution intervalt1 and the data acqui
sition with a proton nutation frequency of 101 kHz. Th
signal in thet1 dimension was apodized with a cos2 function
and converted into the frequency domain using a cos
transform.

The phase cycle for heteronuclear double-quantum N
is similar to that given in Eq.~108!, but with implementation
of the time-proportional phase incrementation~TPPI! proce-
dure used to obtain pure absorption two-dimensional spe
with discrimination of positive and negativev1

frequencies.75 In addition to the transient countermt we need
the evolution increment counter, denotedmi , which is incre-
mented between different values oft1 . The transient counte
takes the valuesmt50,1,...,31 and the phase specificatio
are
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Fprep
S 5Fprep

K 5Fex
S 5Fex

K 5
p

4
mi ,

F re
S~ t1!5

p

2
2

1

2
m8v r t11

p

2
mt1p floorS mt

16D1F re
0,S ,

F re
K~ t1!5

p

2
2

1

2
m8v r t11

p

2
mt ,

~110!

F read
S 5

p

2
1

p

2
mt1

p

2
floorS mt

4 D ,

F rec
S 50,

Fdig
S 5

p

2
floorS mt

4 D2p floorS mt

16D2
p

2
mt ,

assuming that an even number is chosen forqex.84 The phase
F re

0,S is specified in Eqs.~106! and~107!. m8 corresponds to
that given in Eq.~103! and depends on the chosen symmet
Table VI specifiesm8 for the experimental sequences.
two-dimensional data matrixs(t1 ,t2) is compiled by acquir-
ing a set of transients with incrementation of the intervalt1 .
The data matrixs(t1 ,t2) is subjected to a complex Fourie
transform in thet2 dimension, and a cosine Fourier transfor
in the t2 dimension, in order to obtain the 2D spectru
S(v1 ,v2).

VI. CONCLUSIONS

In this paper we showed that it is technically possible
construct rotor synchronized rf pulse sequences on
radio-frequency channels. The pulse sequence symme
may be adjusted to obtain selective heteronuclear recoup
between different spin species, while suppressing hom
nuclear dipole–dipole couplings and chemical shift anisot
pies. We showed a number of experimental results, includ
heteronuclear shift correlation spectroscopy, the estima
of heteronuclear coupling constants, and heteronuc
multiple-quantum NMR.

Where are these generalized HH sequences expecte
be useful?

The measurement of distances between spins is unli
to be a primary area of application. Existing methods such
REDOR3,4 appear to do a good job, even at long hete
nuclear distances. REDOR is also a much simpler pulse
quence and appears to be highly robust. The fact that it is
g encoded does not appear to be a serious impedimen
practice, although it would be desirable to obtain mo
marked dipolar oscillations, if no other sacrifices were n
essary. Nevertheless, the dual rotor-synchronized pulse
quences described here are not expected to compete
REDOR unless homonuclear decoupling is important.

Heteronuclear correlation spectroscopy is also unlik
to benefit much from the sequences presented here. Sim
methods such as adiabatic Hartmann–Hahn cross po
zation76–78 may be a more efficient and reliable way
achieve qualitative magnetization transfer between spin s
cies.

The new pulse sequences may find their main appl
tion in heteronuclear multiple-quantum spectroscopy,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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demonstrated in Fig. 10. As mentioned above, heteronuc
multiple-quantum spectra are generally cleaner than sin
quantum correlation spectra, providing fewer assignm
ambiguities. In addition, the evolution of the heteronucle
multiple-quantum coherence is sensitive to correlated lo
fields, allowing the estimation of nuclear torsional angles a
other angular constraints.24

The theorems discussed here may also be applie
other problems, such as the selective recoupling of het
nuclearJ interactions85–87 and the implementation of high
quality heteronuclear decoupling at the same time as ho
nuclear recoupling. Extension of the two-channel results
three or more channels is also possible. Work in these di
tions is in progress in our laboratory.
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APPENDIX A: IMPLEMENTATION OF C Nn
n AND RNn

n

SEQUENCES

A. CNn
n sequences

Here we prove that the sequence shown in Fig. 1~b! with
pulse sequence elements given by Eq.~16! is a CNn

n se-
quence according to the definition in Eq.~14!.

The propagatorsSq are in this case given by

Sq5RzS 2pn

N
qDS0RzS 2pn

N
qD †

~A1!

and

Eq5E05Rx~Zgp!. ~A2!

The accumulated propagator up to time pointtq may be writ-
ten as follows:

Aq5SqEq21Eq22¯E0 ~A3!

5RzS 2pn

N
qDS0RzS 2

2pn

N
qDRx~Zgqp!. ~A4!

Since a rotation operator through an even multiple ofp is
independent of the rotation axis it is valid thatRx(Zgqp)
5Rz(Zgqp) and therefore

Aq5RzS 2pn

N
qDS0RzS 2

2pn

N
qDRz~Zqqp!. ~A5!

Since a rotation through an even multiple ofp commutes
with all other rotations, Eq.~12! may be used to get

Aq5RzS a01
2pn

N
q1Zgqp DRy~b0!RzS g02

2pn

N
qD .

~A6!
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For CNn
n sequences, the first element and the basic elem

are identical, so we get

Aq5RzS a01
2pn

N
q1Zgqp DRy~b0!RzS g02

2pn

N
qD .

~A7!

This proves that the Euler anglesb andg have the symmetry
defined in Eq.~14!.

B. RNn
n sequences

Here we prove that the sequence shown in Fig. 1~c! with
pulse sequence elements given by Eq.~20! is a RNn

n se-
quence according to the definition in Eq.~17!.

The following relationship between the propagators
the rf field within each elementEq of the RNn

n sequence and
the propagator for the rf field within the basic elementR is
valid:

Sq5Rx~qp!RzS pn

N DS0RzS pn

N D †

Rx~qp!†. ~A8!

The propagatorsEq are given by

Eq5Rx~qp!RzS pn

N DRx~Zup!RzS pn

N D †

Rx~qp!†. ~A9!

It is straightforward to prove

Eq21Eq22¯E05Rx~qZup!RzS 2
2pn

N
qD . ~A10!

The accumulated propagator up to time pointtq may be writ-
ten as follows:

Aq5SqEq21Eq22¯E0 ~A11!

5Rx~qp!RzS pn

N DS0RzS 2
pn

N D
3Rx@q~Zu21!p#RzS 2

2pn

N
qD . ~A12!

Since Zu21 is even, the propertyRx@q(Zu21)p#
5Rz@q(Zu21)p# applies. Since a rotation through an ev
multiple of p commutes with all other rotations, we get

Aq5Rx~qp!RzS pn

N
1q~Zu21!p DS0RzS 2

pn

N
2

2pn

N
qD

5Rx~qp!RzS a01
pn

N
1q~Zu21!p DRy~b0!

3RzS g02
pn

N
2

2pn

N
qD

5RzS 2
p

2 DRy~qp!RzS a01
p

2
1

pn

N
1q~Zu21!p D

3Ry~b0!RzS g02
pn

N
2

2pn

N
qD

5RzF2
p

2
1~21!qS a01

p

2
1

pn

N D1q~Zu21!pG
3Ry~b01qp!RzS g02

pn

N
2

2pn

N
qD ~A13!
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and hence

bq5b01qp, gq5g02
pn

N
2

2pn

N
q. ~A14!

This leads to the following values for the Euler angles of
first element

b05b0, g05g02
pn

N
~A15!

and hence

bq5b01qp, gq5g02
2pn

N
q. ~A16!

This proves that the Euler anglesb andg have the symmetry
defined in Eq.~17!.

APPENDIX B: GENERAL SCALING FACTORS

A. Single-channel sequences

Assume that the basic elementE0 is built of a sequence
of N rectangular pulses with flip angles and phas
(j0)f0

,(j1)f1
,...,(jN21)fN21

and rf nutation frequencie

vnut
0 ,vnut

1 ,...,vnut
N21. The durations of the pulses are given

t0 ,t1 ,...,tN21 , wherejp5vnut
p tp . Define the pulse Eule

angles in the following way:

Vp5~Ap ,Bp ,Gp!5S fp2
p

2
,2jp ,2fp1

p

2 D . ~B1!

The factorKmlm in Eq. ~51! is given by

Kmlm5 (
p50

N21
tp

tE
K̃mlm

~p! , ~B2!

where the individual pulse contributionsK̃mlm
(k) are

K̃mlm
~0! 5Kmlm

~0! ,

K̃mlm
~1! 5exp$ imvtt0%(

m8
Dmm8

l
~Ṽ0!Kmlm8

~1! ,

~B3!
]

K̃mlm
~p! 5expH imv r (

p850

p21

tp8J (
m8

Dmm8
l

~Ṽp21!Kmlm8
~p! .

The termsKmlm
(p) are given by

Kmlm
~p! 5exp$2 imAp%tp

21E
0

tp
dt dm0

l S Bp

t

tp
Dexp$ imvtt%.

~B4!

The Wigner elementsDmm8
l (Ṽp) are defined through the it

eration
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Dmm8
l

~Ṽp!5(
m9

Dmm9
l

~Ṽp21!Dm9m8
l

~Vp!,

~B5!
Dmm8

l
~Ṽ0!5Dmm8

l
~V0!.

If the rf field is modulated smoothly, the scaling factor m
be calculated by approximating the modulations as a
quence of small rectangular elements and taking the limi
a large number of stepsN.

B. Dual sequences

The results from the previous section may be generali
for the case of dual sequences. In this case we assume
the basic elementsES

0 andEK
0 are divided into a synchronou

sequence ofN rectangular pulses with flip angles and phas
(j0

S)f
0
S,(j1

S)f
1
S,...,(jN21

S )f
N21
S on the S spins and

(j0
K)f

0
K,(j1

K)f
1
K,...,(jN21

K )f
N21
K on theK spins. The durations

of the pulses are given byt0 ,t1 ,...,tN21 . The nutation fre-
quency of the pulse with indexp is vnut

S,p andvnut
K,p on theS

and K spins, respectively, so thatjp
S5vnut

S,ptp and jp
K

5vnut
K,ptp . If different pulse sequences are used on theS- and

K-spin channels, the division between different eleme
must be simultaneous on the two channels. For example
choice ES

05901802700 and EK
0 5270090180 must be reen-

coded asES
05901801800900 andEK

0 5900180090180.
Define a set of pulse Euler angles in the following wa

Vp
S5~Ap

S ,Bp
S ,Gp

S!5S fp
S2

p

2
,2jp

S ,2fp
S1

p

2 D , ~B6!

Vp
K5~Ap

K ,Bp
K ,Gp

K!5S fp
K2

p

2
,2jp

K ,2fp
K1

p

2 D . ~B7!

The factorKmlSmSlKmK

SK in Eq. ~92! is given by

KmlSmSlKmK

SK 5 (
p50

N21
tp

tE
K̃mlSmSlKmK

~p! , ~B8!

where the individual pulse contributionsK̃lSmSlKmK

(p) are

K̃mlSmSlKmK

~0! 5KmlSmSlKmK

~0! ,

K̃mlSmSlKmK

~1! 5exp$ imv rt0% (
mS8 ,mK8

D
mSm

S8

lS ~Ṽ0
S!

3D
mKm

K8

lK ~Ṽ0
K!KmlSm

S8lKm
K8

~1! ,

~B9!
]

K̃mlSmSlKmK

~p! 5expH imv r (
p850

p21

tp8J (
mS8 ,mK8

D
mSm

S8

lS ~Ṽp21
S !

3D
mKm

K8

lK ~Ṽp21
K !KmlSm

S8lKm
K8

~p! .

The termsKmlSmSlKmK

(p) are given by
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KmlSmSlKmK

~p! 5exp$2 i ~mSAp
S1mKAK

S!%

3tp
21E

0

tp
dt dmS0

lS S Bp
S t

tp
Dd

mK0
lK S Bp

K t

tp
D

3exp$ imv r t%. ~B10!

The Wigner elementsD
mSm

S8

lS (Ṽp
S) and D

mKm
K8

lK (Ṽp
K) are de-

fined through the iterations

D
mSm

S8

lS ~Ṽp
S!5(

mS9
D

mSm
S9

lS ~Ṽp21
S !D

m
S9m

S8

lS ~Vp
S!, ~B11!

D
mSm

S8

lS ~Ṽ0
S!5D

mSm
S8

lS ~V0
S!, ~B12!
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lK ~Ṽp21
K !D

m
K9 m

K8

lK ~Vp
K!, ~B13!
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lK ~Ṽ0
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mKm
K8

lK ~V0
K!. ~B14!
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The case of smooth rf modulations may be handled by us
the limit of largeN.

APPENDIX C: MODIFIED SC14

In this appendix we describe the modified SC14
quence used to obtain the results shown in Fig. 7. The su
cycle is given by

SC145C144
5~0..6!•@Pp

21
•C144

25~7..13!•Pp#p/7

3C144
5~7..13!•@P0

21
•C144

25~0..6!•P0#p/7

3@C144
5~0..6!#p•@Pp

21
•C144

25~7..13!•Pp#8p/7

3@C144
5~7..13!#p•@P0

21
•C144

25~0..6!•P0#8p/7 ,

where the notation C144
5(q1 ..q2) indicates the use of the

elementsq1 to q2 of the sequence C144
5. The notationPf

indicates the insertion of ap-pulse element with the phasef
and Pf

21 indicates the deletion of ap-pulse element. The
notation@¯#f indicates an overall phase shift of the brac
eted sequence byf. The full modified SC14 sequence ma
be written as follows:
3600 360128.57 360257.14 36025.71 360154.29 360282.86 36051.43

180205.71 36077.14 360308.57 360180 36051.43 360282.86 360154.29 180205.71

360180 360308.57 36077.14 360205.71 360334.29 360102.86 360231.43

18025.71 360257.14 360128.57 3600 360231.43 360102.86 360334.29 18025.71

360180 360308.57 36077.14 360205.71 360334.29 360102.86 360231.43

18025.71 360257.14 360128.57 3600 360231.43 360102.86 360334.29 18025.71

3600 360128.57 360257.14 36025.71 360154.29 360282.86 36051.43

180205.71 36077.14 360308.57 360180 36051.43 360282.86 360154.29 180205.71, ~C1!
ys.

J.

tt.

m.

nd

R.

m.

J.

m.
where all flip angles and phases are specified in degrees.
complete sequence spans 16 rotor periods. This versio
SC14 was found experimentally to be be slightly more rob
with respect to chemical shifts than the version reported
Ref. 56, although this sequence performs slightly worse
numerically exact simulations.

The original SC14 sequence56 and the modification pre
sented here are conveniently implemented as a sequen
180° pulses. The 360° pulses are divided into two 18
pulses of the same phase. The total number of 180° p
elements, used in a recoupling sequence, is calledq180, and
should be an even integer, even though this means tha
sequence might finish after half a 360° pulse. For the orig
SC14 sequence the best performance is achieved, ifq180 is a
multiple of 28, whereas in the case of the modified SC
sequence, given in Eq.~C1!, q180 should be a multiple of 14
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