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Introduction

Modern solid-state NMR employs a range of rf pulse sequences for a variety of tasks.
There are decoupling sequences which reinforce the averaging effect of the magic-angle
rotation, causing different spin species to evolve approximately independently of each
other. There are also recoupling sequences which undo the averaging effect of the
magic-angle rotation, temporarily restoring couplings which are otherwise inactivated
by the sample spinning. The success of solid-state NMR in biological research may
depend on the development of decoupling and recoupling pulse sequences which are
robust with respect to a variety of undesirable spin interactions and experimental
imperfections, and which function over a wide range of static magnetic fields and/or
spinning frequencies.

With this in mind, our group has developed a general pulse sequence design strategy
which is applicable to a wide range of methodological situations. The strategy is based
on the use of symmetry arguments to design rotor-synchronized pulse sequences[1-7].
The basic decoupling and recoupling properties of a certain types of pulse sequence
may be predicted using the values of just three integers, called symmetry numbers.
These results apply even when the spinning frequency is comparable to the nutation
frequency of the spins in the rf field. Furthermore, the symmetry theorems may be
inverted: It is possible to find the combinations of symmetry numbers  that give rise to a
set of desirable pulse sequence properties. The symmetry theory provides a theoretical
framework which greatly simplifies the task of designing rotor-synchronized pulse
sequences. In this short article, we sketch the basic symmetry arguments and illustrate a
few of the pulse sequences we have designed and demonstrated. In addition, we show
that the symmetry theorems provide insight into the behaviour of a number of existing
pulse sequences. Much of this work is of a preliminary nature and will be described in
more detail in forthcoming publications.
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Table 1. Classification of spin interactions in a homonuclear system. The interactions are:
Isotropic chemical shift; J-coupling; chemical shift anisotropy; direct dipole-dipole coupling.

Space Rank l Spin Rank λ Field Rank

Iso-CS 0 1 1

J 0 0 0

CSA 2 1 1

DD 2 2 0

 Theory

The symmetry theorems are based on the rotation properties of the spin interaction
terms. Table 1 summarizes the rotation properties of the most important nuclear spin
interactions for homonuclear coupled systems (we have also generalized our results to
heteronuclear systems, but this will not be discussed here). Each interaction term
behaves as a component of an irreducible spherical tensor with respect to rotations of
either the molecules ("space rank", denoted l), the nuclear spin polarization axes ("spin
rank", denoted λ), or the static magnetic field ("field rank"). In practice, the "field rank"
is unimportant since the direction of the static field cannot normally be changed, for
technical reasons. Nevertheless, the field rank is included in Table 1 for completeness.
The table shows that the pairs of space-spin ranks are different for all the interactions.
The symmetry theorems described below exploit this distinction by synchronized "space
rotations" (i.e. bulk rotation of the whole sample) and "spin rotations" (implemented by
rf field pulse sequences).

In general a spherical tensor of rank l has 2l+1 spherical components, with indices
m=-l, -l+1..+l.  Similarly, each spin interaction has a set of components, with space
quantum numbers m and spin quantum number µ taking all possible values permitted by
the space and spin ranks l and λ . In the presence of a rf field, the homonuclear DD
interaction has 25 components (5×5), while the CSA interaction has 15 components
(3×5).

The large number of rotational components contributes to the technical difficulty of
the general recoupling problem. As an example, consider the task of double-quantum
homonuclear recoupling, which is one of the most useful modes of reintroducing the
homonuclear dipole-dipole interactions [1-9]. In this experiment, the evolution of the
spin system should be rendered sensitive to only the double-quantum DD components
with µ=−2 and+2. The chemical shift terms and other DD terms should be suppressed.
In addition, it is often desirable that each spin component µ is only associated with a
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single space component m, since this leads to a favourable orientation-dependence of
the recoupling (this property is called γ-encoding [1-3, 9]). In order to create a γ-
encoded 2Q recoupling sequence, it is therefore necessary to suppress over 30
undesirable spin interaction terms, retaining only two. Any attempt to do this by
searching over the possible combinations of pulse flip angles and rf phases, without the
assistance of symmetry, has little hope of success.

C-type sequences. So far, the symmetry theorems apply to two general classes of

rotor synchronized pulse sequence. The first class is denoted CNn
ν
, where N, n and ν

are the three symmetry numbers [4, 6, 7]. This class of pulse sequence may be
constructed as follows: (i) take n sample revolution periods; (ii) divide this into N equal
intervals; (iii) fill each interval with a rf pulse sequence C, which is a cycle, meaning
that the rf fields bring the spins back to their starting states, if all other interactions are
ignored; (iv) shift the phase of the qth C element by the angle 2�qν/N, where
q=0,1..N–1. The symmetry numbers n and ν are called the space and spin winding
numbers [6].

The selection rule for CNn
ν
 symmetry may be denoted [4, 6]

Hlmλµ
( )1 0=  if  mn-µν ≠  NZ (1)

where Z is any integer (including zero). The left-hand side of this equation expresses the
first-order average Hamiltonian for the term with space rank l, spin rank λ  and
component indices m and µ. If a term with a certain combination of quantum numbers
lmλµ vanishes, then the pulse sequence is expected to be insensitive to this term, to a
good approximation. By  choosing values of N, n and ν that cause Eq.(1) to be satisfied
for all the undesirable terms lmλµ, while ensuring that Eq.(1) is not satisfied for all the
desirable terms, one may focus on pulse sequences which are guaranteed to be good
candidates for the task in hand.
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Fig.1 Space-spin selection diagram for C72
1. The mirror image pathways with m=-1 and m=-2

have been suppressed for the sake of clarity.

Space-spin selection diagrams [6] are useful for visualizing the consequences of

Eq.(1). One example is shown for the symmetry  C72
1
 in Fig.1. For each interaction, the

composition of the term mn-µν  is broken into two stages, so as to make clear how the
symmetry numbers n and ν interact. The inequality in Eq.(1) is visualized by a barrier
with holes separated by N units. Only interactions which "pass through the holes" do
not satisfy the inequality in Eq.(1) and are retained in the average Hamiltonian.
Interactions which "run into the wall" are suppressed in the average Hamiltonian. The

diagram in Fig.1 illustrates that the symmetry  C72
1
 suppresses all terms except for the

2Q DD terms (lmλµ )=(2122) and (2 -1 2 -2), and hence has the basic properties
necessary for γ-encoded 2Q recoupling with chemical shift suppression. The successful
C7 [1] and POST-C7 [2] sequences exploit this symmetry.

R-type sequences. The second class of symmetrical rotor-synchronized pulse
sequences is based upon 180° rotation elements, denoted R, rather than cycles [7]. One

construction procedure for RNn
ν
  sequences is as follows: (i) take n sample revolution

periods; (ii) divide this into N equal intervals; (iii) fill each interval with a rf pulse
sequence R, which implements a � rotation around the x-axis, if all other interactions
are ignored; (iv) for odd-numbered elements, change the sign of all phase shifts within
the element R; (v) shift the phase of the qth element by the angle (–1)q�ν/N, where
q=0,1..N–1.

This construction procedure resembles that for CNn
ν

 sequences, except for the
selection of a 180° rotation element rather than a cycle, the change in the sign of the
phase shift for odd-numbered elements, and the alternation of the phases implied by step
(v), instead of the incrementation of the phases employed in the C-sequences.

The theory of these sequences will be described elsewhere. The selection rules for

RNn
ν
  sequences are given by [7]:

Hlmλµ
( )1 0=  if   mn-µν ≠  (N/2)×Zλ (2)
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where Zλ is an integer of the same parity as the spin rank λ, i.e. if λ is odd, then Zλ is an

odd integer, while if if λ is even, then Zλ is an even integer, including zero.

The selection rule (2) is more restrictive than the rule (1). In particular, the positions
of the holes in the "barrier" depend on the spin rank λ: If λ is even, then the holes occur
at levels 0, ±N, ±2N..; If λ  is odd, then the holes occur at levels ±N/2, ±3N/2.. This
dependence on the spin rank λ allows the R-sequences to discriminate between terms
with the same values of m and µ, but different values of λ , creating many new
possibilities.

The scaling factor. Although the symmetry properties ensure the suppression of
undesirable terms in the average Hamiltonian, they say nothing about the magnitude of
the terms that are retained. In general, these terms are proportional to a scaling factor,
denoted κ, that depends on the detailed structure of the elements C or R.  Formulae for
the scaling factor are given elsewhere [6]. It is normally desirable that κ is as large as
possible for the symmetry-allowed terms.

Supercycles. The performance and robustness of the symmetry-based sequences may
be enhanced further by building supercycles. This is done by concatenating the original

CNn
ν
 or RNn

ν
 sequence with one or more variant cycles, which are usually related to

the original one by well-defined "mutations". Some common mutations are: (i) overall
phase shifts; (ii) change in sign of the spin winding number ν; (iii) cyclic permutation of
some pulse sequence elements. The construction of supercycles must be performed with
care, as it is easy to destroy some of the favourable properties of the original sequence if
the supercycle construction procedure does not respect the appropriate symmetry
constraints. Some examples of useful supercycles are given in refs.[3, 5, 6], and in the
discussion below.
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Fig.2. Double-quantum-filtered 13C signal amplitudes in [11,20-13C2]-all-E-retinal, obtained
using a R224

9 sequence at a static field of 9.4 T and a spinning frequency of 7.000 kHz. The
triangles are experimental points; the solid line is a numerical simulation for a 0.299 nm
distance, multiplied by a biexponential decay function fitted to obtain the best match with
experiment (the fitting of the decay has very little impact on the estimated distance). The dashed
lines show best fit simulations for distances of 0.295 nm and 0.304 nm. The pulse sequence was
as in ref.1, except that a R224

9 sequence was used instead of C7,  and that the 2Q reconversion
interval was held fixed at 5.0 ms while the 2Q excitation interval was varied.

Results and Discussion

A brief selection of previously unpublished experimental results for some symmetry-
based pulse sequences will now be given. These results are of a preliminary nature and
will be published in full elsewhere.

Double-quantum homonuclear recoupling and 13C-13C distance measurements. One of
the most important and challenging tasks in magic-angle-spinning NMR is to recouple
homonuclear dipolar interactions, allowing the measurement of internuclear distances,
for example between 13C nuclei. Double-quantum schemes are particularly important in
biomolecular NMR since the special phase properties of excited double-quantum
coherences allow the complete suppression of signals from natural abundance 13C spins,

even in large molecules. The C7 sequence, which has the symmetry C72
1
 (see Fig.1)

has been very successful and is used in a variety of guises [1-3]. However, this
symmetry tends to require a rather large ratio of the rf field to the spinning frequency.
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Recently, we have experimented with different symmetries, such as C144
5
, which may

be used in a supercycled form which requires only half the rf field of C7 [6]. Other

groups have exploited a supercycled version of C52
1
 symmetry [5]. More recently, we

have shown that a large number of promising R-sequence solutions exist [7]. These

sequences are often more robust than the CNn
ν
 sequences, especially with respect to

chemical shift anisotropy. Fig.2 shows some experimental results for a R224
9
 sequence,

performed on a crystalline sample of  [11,20-13C 2]-all-E-retinal in which the
internuclear distance, as determined by X-ray diffraction, is 0.296 nm [10]. The
prominent oscillation is due to the through-space dipole-dipole coupling. The oscillation
frequency provides an internuclear distance estimate of  0.299 nm, in close agreement
with the X-ray result. The precision of the distance estimate is better than ±3 pm, as
may be seen in Fig.2.

We have used R142
6
 and R224

9
 sequences on a number of 13C2-labelled compounds.

One objective of this work has been to assess the feasibility of accurate C-C bond length
measurement in systems with large CSA. Such measurements would be very useful for
elucidating the electronic structure of ligands and prosthetic groups, for example the
retinylidene chromophore of rhodopsin and its relatives. So far, our results are quite
encouraging. We have examined four 13C2-labelled compounds, with the reported C-C
distances from diffraction measurements spanning the range 0.131 nm to 0.153 nm (the
compounds were  diammonium [2,3-13C2]-fumarate; ammonium hydrogen [2,3-13C2]-
maleate; [14,15–13C2]-all-E-retinal; L-[2,3–13C2]-alanine). This set of compounds
includes both double and single C-C bonds and spans a wide range of isotropic shifts
and chemical shift anisotropies. In all cases, the 13C-13C distances determined by the

R142
6
 sequence in a field of 9.4 T agreed with the diffraction methods to within 5 pm.

The main source of uncertainty in the NMR distance measurement is the lack of
knowledge of the CSA orientations. Despite this, the methods are sufficiently precise to
allow informative measurements of C-C bond lengths in biomolecules.

We have also measured longer distances, such as the one shown in Fig.2, as well as
the 0.39 nm 13C-13C distance in diammonium [1,4-13C2]-fumarate, which was estimated
with an accuracy of 10 pm. There is more work to be done, but the method shows
promise for investigating the bonding structure at the active site of large, non-crystalline
biomolecules such as retinal proteins.

One point of technical importance should be noted: Although the RNn
ν
 sequences

are robust in many respects, they are exceedingly sensitive to the accuracy and stability
of the rf phase shifts. We often need to adjust the rf phase in steps of 0.1° in order to
obtain best performance. Instrument manufacturers take note!
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Fig.3. Experimental single-quantum 2D correlation spectrum of L-[U-13C]-tyrosine at a field
of 9.4T and a spinning frequency of 23 kHz, obtained using the sequence in Eq.(3), with a
duration 1 ms.

Zero-quantum homonuclear recoupling and 13C-13C correlations. The symmetry
theorems given above may readily be applied to the problem of ZQ homonuclear
recoupling. Zero-quantum recoupling sequences may be used to obtain 2D 13C-13C
correlations maps, which are useful for spectral assignment. The symmetries may be
chosen so as to provide insensitivity to isotropic and anisotropic chemical shifts, unlike
the widely-used RFDR sequence, which relies on chemical shift interference in order to

work at all [11].  One promising sequence uses the symmetry R66
2
 with the basic

element R = 901802700, incorporated in a 6-fold supercycle. The full sequence has the
form

[ R66
2
 R66

−2
 ]

0
 [ R66

2
 R66

−2
 ]

120
 [ R66

2
 R66

−2
 ]

240
(3)

where [..]
φ
  represents an overall phase shift through the angle φ. Some experimental

results for  L-[U-13C]-tyrosine are shown in Fig.3.
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Fig.4. Numerical simulations of powder-average Zeeman magnetization transfer between

two 
13C spins, at a MAS frequency of 38 kHz. Top: the sequence in Eq.(3); Bottom: RFDR. The

magnetization transfer is shown as a function of time (horizontal axis) and static field (specified
as the proton Larmor frequency in MHz). The simulation parameters correspond to [U-13C]-
glycine.

The preliminary numerical simulations shown in Fig.4 indicate that the supercycled

R66
2
  sequence should display excellent performance at high magnetic fields (simulated

up to 20 T) and high sample spinning frequencies (simulated at 38 kHz), without
requiring an excessively large rf field. Its predicted performance is more broadband
with respect to chemical shifts and chemical shift anisotropies than RFDR, despite its
lower rf field requirements. Furthermore, the new sequence also has much lower rf field
requirements than the RIL method [12, 13], which normally cannot be implemented at
all at high spinning frequencies. In addition, the sequence in Eq.(3) is expected to be
tolerant to the setting of the rf phase shift.
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Fig5. (Top)  Experimental 13C spectrum of  L-[15N, 2-13C]-alanine, obtained by taking the cross-
polarized 13C  signal in the presence of a R182

5 sequence at the 1H  Larmor frequency. The
basic element of the R182

5 sequence was R = 1800. The static field was 9.4 T, the spinning
frequency was 18 kHz, and the proton nutation frequency was 81 kHz. (Bottom) Numerical
simulation using a simple heteronuclear two-spin model, with an effective CH distance of
0.112nm.

Heteronuclear dipolar recoupling with homonuclear decoupling. The symmetry
theorems also allow one to design sequences that recouple different spin species, such
as 13C and 1H spins, at the same time as decoupling homonuclear spins from each
other [7]. Fig.5 shows the Fourier transform of 13C signals acquired in the presence of

R182
5
 irradiation of the protons.  The R182

5
 sequence recouples the heteronuclear

dipole-dipole interaction while decoupling the protons from each other. The spectral
splitting is due to the recoupled heteronuclear dipole-dipole interaction between the 13C
spin and its directly-bonded 1H neighbour. We anticipate that bond lengths and other
internuclear distances may simply be read off such one-dimensional spectra, after
calibration of the scaling factor κ . This will be useful for investigating hydrogen
bonding and other structural issues.
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Other symmetries. A variety of symmetries for other decoupling tasks was listed in
ref.[7]. We are also preparing a publication on multiple-channel rf sequences
(A. Brinkmann, unpublished). An application of C-type sequences to the MAS of
oriented systems is sketched by C. Glaubitz elsewhere in this volume.

Existing pulse sequences. The symmetry theorems sketched here also provide insight
into the operation of a variety of well-known pulse sequences. For example, the

REDOR scheme with xy phase cycling [14-16] conforms to R42
1
 symmetry. This

symmetry accounts for the good performance of this sequence, particularly in regimes
for which it was not originally designed, such as at fast MAS frequencies [17].

However, the R42
1
 symmetry of REDOR also recouples the irradiated spins with each

other -- this undesirable feature may often be unimportant when REDOR is applied to
low-γ spins such as 15N, but should be of concern in other situations.

The RFDR homonuclear recoupling method [11], with xy phase cycling, conforms to

R44
1
 symmetry. This is an appropriate symmetry for the task of zero-quantum

homonuclear recoupling [7]. However, the scaling factor κ  of RFDR vanishes in the
limit of infinite rf field. The RFDR sequence only works at all because the duration of
the rf pulses is finite, and because of assistance from higher-order interference terms
involving the chemical shifts. As a result, the magnetization transfer under RFDR is
strongly dependent on both the isotropic and anisotropic chemical shifts, as well as the
rf field strength. The new symmetry-based sequences, such as the one given in Eq.(3),
are expected to be more quantitative and reliable.

The successful TPPM heteronuclear decoupling method [18] is also amenable to
symmetry analysis [4, 7].

Conclusions

The symmetry theorems described here allow a wide variety of decoupling and
recoupling problems in solid-state NMR to be addressed in a rational and general way.
Symmetry does not itself solve all problems, but does provide a sound starting point for
designing pulse sequences. We have obtained promising results for double-quantum and
zero-quantum homonuclear recoupling sequences, and for heteronuclear recoupling
sequences. Some of these solutions are predicted to have good performance at very high
magnetic fields and at very fast sample rotation frequencies. Other solutions provide
robust and quantitative performance under moderate fields and spinning frequencies, in
the presence of large chemical shift anisotropies.

My guess (M.H.L.) is that the future development of solid-state NMR in biology will
continue to include several parallel strands, with high and low magnetic fields, high and
low spinning frequencies, and a variety of labelling strategies, all playing important
roles in different situations. In many cases very high static magnetic fields will lead to
good spectral resolution, but these advantages should be balanced against the enhanced
effects of the chemical shift anisotropies, which will often compromise the quantitation
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of methods for geometry determination.  Similarly, the use of heavily-labelled
compounds increases the information output per sample, but also degrades the quality
and reliability of the geometrical information, and increases the complexity of the
analysis. For these reasons, solid-state NMR on selectively-labelled compounds at
moderate fields will continue to be a sound strategy for obtaining reliable and
quantitative geometrical data, at least in many contexts. The biological solid-state NMR
spectroscopists of the future will be faced with some interesting strategic choices.

In any case, the design of pulse sequences using symmetry, as sketched here, is
versatile enough for a wide range of future scenarios.
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