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I. Analytical Expressions for 3Q terms

A. Symmetries of Scaling Factors

Here we examine the relationship between κl2m2λ2µ2
l1m1λ1µ1

and κl1m1λ1µ1
l2m2λ2µ2

, i.e., the dependence

of the second-order scaling factors upon permutation of the two sets of quantum num-
bers comprised in the cross-term: {(l2m2λ2µ2), (l1m1λ1µ1)} ←→ {(l1m1λ1µ1), (l2m2λ2µ2)}.
This has consequences for the expressions of the symmetrized second-order scaling factors,
depending on the R/C category 2-4 that the symmetry-allowed term belongs. According to
Eqs. (30)-(35), the scaling factor depends on products of the sums S�

l2m2λ2µ2
l1m1λ1µ1

and S4l2m2λ2µ2
l1m1λ1µ1

with the corresponding integrals A�
l2m2λ2µ2
l1m1λ1µ1

and A4
l2m2λ2µ2
l1m1λ1µ1

. From Eqs. (31) and (34) follow

directly that A�
l2m2λ2µ2
l1m1λ1µ1

is invariant to exchange of the order of the terms, i.e.,

A�
l2m2λ2µ2
l1m1λ1µ1

= A�
l1m1λ1µ1
l2m2λ2µ2

(S-1)

whereas no such symmetry exists for A4
l2m2λ2µ2
l1m1λ1µ1

; in the general case, A4
l2m2λ2µ2
l1m1λ1µ1

6= A4
l1m1λ1µ1
l2m2λ2µ2

.

Further, the expressions for the sum terms, S�
l2m2λ2µ2
l1m1λ1µ1

and S4l2m2λ2µ2
l1m1λ1µ1

, depend on which R/C

category (2, 3a, 3b or 4) the recoupled term belongs (Table I and S-I):

S4l2m2λ2µ2
l1m1λ1µ1

= S4
l1m1λ1µ1
l2m2λ2µ2

=

{
0 for class 1, 3a and 3b

1/N for class 2 and 4
(S-2)

S�
l2m2λ2µ2
l1m1λ1µ1

[2] =

(
S�

l1m1λ1µ1
l2m2λ2µ2

[2]

)∗
(S-3)

S�
l2m2λ2µ2
l1m1λ1µ1

[3a] = −S�
l1m1λ1µ1
l2m2λ2µ2

[3b] (S-4)

S�
l2m2λ2µ2
l1m1λ1µ1

[4] = S�
l1m1λ1µ1
l2m2λ2µ2

[4] (S-5)

The number within brackets denotes the category of the term. Note that most of them are
invariant to exchange of the order of the two rows of subscripts (i.e., the order of (l2m2λ2µ2)
and (l1m1λ1µ1)) in the cross-term, except S�

l2m2λ2µ2
l1m1λ1µ1

if the term falls into R/C categories

2, 3a, or 3b. Eq. S-4 means that if the term {(l2m2λ2µ2), (l1m1λ1µ1)} belongs to class
3a, then {(l1m1λ1µ1), (l2m2λ2µ2)} belongs to class 3b, and that the two sums are related
by sign reversal. The equations above imply that only κ�

l2m2λ2µ2
l1m1λ1µ1

contributes to the scaling

factor for terms of R/C categories 3a and 3b, whereas only κ4l2m2λ2µ2
l1m1λ1µ1

is contributing in the
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case of a category 4 term. From these expressions, combined with Eqs. (31), (34), (30)
follow that the general form of the symmetrized scaling factor,

κ(
l2m2λ2µ2
l1m1λ1µ1

) =
−ni

2

{(
S�

l2m2λ2µ2
l1m1λ1µ1

− S�
l1m1λ1µ1
l2m2λ2µ2

)
A�

l2m2λ2µ2
l1m1λ1µ1

+ S4l2m2λ2µ2
l1m1λ1µ1

(
A4

l2m2λ2µ2
l1m1λ1µ1

−A4
l1m1λ1µ1
l2m2λ2µ2

)}
(S-6)

reduces to one of the following expressions, depending on the relevant R/C category 2-4:

κ(
l2m2λ2µ2
l1m1λ1µ1

) [2] =
−inτr

2

{
2i Im

(
S�

l2m2λ2µ2
l1m1λ1µ1

)
A�

l2m2λ2µ2
l1m1λ1µ1

+
1
N

(
A4

l2m2λ2µ2
l1m1λ1µ1

−A4
l1m1λ1µ1
l2m2λ2µ2

)}
(S-7)

κ(
l2m2λ2µ2
l1m1λ1µ1

) [3a, 3b] = −inτrS
�
l2m2λ2µ2
l1m1λ1µ1

A�
l2m2λ2µ2
l1m1λ1µ1

(S-8)

κ(
l2m2λ2µ2
l1m1λ1µ1

) [4] =
−inτr

2N

(
A4

l2m2λ2µ2
l1m1λ1µ1

−A4
l1m1λ1µ1
l2m2λ2µ2

)
(S-9)

B. 3Q Average Hamiltonian Frequencies

The explicit forms of the frequencies in Eq. (70) depends on the category 2-4 to which
the cross-term belongs. It follows from the general expressions of the symmetrized terms
that the frequency ω̄

(ij×ik)
Tr

may be written

ω̄
(ij×ik)
Tr

=
−niτr
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(
S�

2m222
2m121

− S�
2m121
2m222

)
A�

2m222
2m121

+S4
2m222
2m121

(
A4

2m222
2m121

−A4
2m121
2m222

)
A

(ij×ik)
m2m1

(S-10)

= κ(
2m222
2m121

)A(ij×ik)
m2m1

(S-11)

where A(ij×ik)
m2m1 is given by a product of rotor-frame dipolar coupling components according

to

A(ij×ik)
m2m1

=
[
Aij

m2

]R [
Aik

m1

]R
+
[
Aij

m1

]R [
Aik

m2

]R
(S-12)

Terms belonging to different categories (2, 3a, 3b or 4) provide different expressions; they
are obtained by substitution of the symmetrized scaling factors (Eqs. (S-7), (S-8) and (S-9)
into Eq. (S-11).

II. Heteronuclear Decoupling during 3Q Recoupling

Heteronuclear 1H-13C decoupling is well-known to be problematic when simultaneously
applying 13C recoupling pulses.S1–5 It has been shown that a ratio between the nutation
frequencies ωH

nut/ωC
nut> 3 is required to reduce signal losses.S1,2 The complications are
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particularly acute when employing windowed pulse elements,S6 as they require strong rf
recoupling pulses to minimize the pulse fraction. For 3Q recoupling, signal losses occur
otherwise due to increased interferences from ZQ dipolar and chemical shift interactions.
Therefore, the unfortunate condition ωH

nut/ωC
nut ≈ 1 had to be employed in our experiments

at B0 = 4.7 T.

We observed that the heteronuclear decoupling performance was strongly dependent on
the spinning frequency. The experiments on dAla using low spinning speeds employed ”CW”
decoupling with slightly different amplitudes (optimized individually) during 13C pulses and
windows of the R187

3-based schemes at both magnetic fields. However, this approach gave
severe losses both for dAla and tyrosine at spinning frequencies ωr/2π > 7 kHz. For example,
using ωH

nut ≈ 115 kHz CW decoupling on tyrosine resulted only in ≈ 2% 3QF efficiency.

We found empirically that the heteronuclear decoupling performance could sometimes
be dramatically improved by changing the 1H rf phases synchronously with the various
fragments (i.e., pulses and windows) of the 13C rf pulse sequence. Consequently, we op-
timized the sequence of 1H rf phases and amplitudes individually for each sample. In
the experiments of Fig. 6 for dAla, we employed the following sequence of phases:(
φH

p1
, φH

w1
, φH

p2
, φH

w2
, φH

p3

)
= (0, π, 0, π, π) , where φH

pj
and φH

wj
denote the 1H rf phase dur-

ing the jth 13C pulse and window of Rw(β), respectively (see Eq. (75)). The following
phases gave best result for tyrosine: (0, π, π, 0, π). Many combinations provided similar
decoupling performance but were consistently reproducible and identical for (R187

3)3
1 and

(R187
3R18−7

3 )31 on each sample. The reasons for the improved decoupling results are at the
moment not fully understood and further investigations along these lines are underway. No
improvements over CW decoupling were observed at lower spinning frequencies (ωr/2π . 7
kHz) at either magnetic field.

III. 3Q-1Q Correlation Experiments

To allow an unrestricted spectral width in ω1, i.e., an arbitrary incrementation of t1, the
3Q recoupling sequence must fulfil the condition that all its recoupled second-order 3Q terms
{(l2,m2, λ2, µ2), (l1,m1, λ1, µ1)} have equal ratios (m2 + m1)/(µ2 + µ1). The requirement
for second-order symmetry-based correlation spectroscopy is analogous to that discussed in
Refs.S5,7,8 for first order recoupling scenarios. For instance, from Table III follows that R8−1

1

and C7−1
2 do not meet this condition (and neither do (SS ′)31 schemes in general) whereas

R187
3 and R142

3 do. t1 may then be incremented arbitrarily, provided that the following
t1-dependent phase-shift is applied to the reconversion pulse block

Φrec(t1) =
π

3
k +

m2 + m1

µ2 + µ1
ωrt1 (S-13)

where the spin and spatial components depend on the recoupled second-order terms and k

is any integer.
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In the 3Q-1Q correlation experiment of Fig. 10, the TPPI schemeS9 was used to obtain
a purely absorptive 2D spectrum with sign discrimination along both spectral The spectral
widths (after TPPI processing) were 25 kHz and 20 kHz in the first and second spectral
dimensions, and (128×350) time-points were recorded.

IV. Second-Order Terms: Generic Analytical Expressions

Here we present the generic closed analytical sums derived from S�
l2m2λ2µ2
l1m1λ1µ1

(Eq. (32))

and S4l2m2λ2µ2
l1m1λ1µ1

(Eq. (35) in the case of CNν
n and RNν

n sequences (Table S-I) and for S�
µ2µ1

(Eq. (58)) and S4µ2µ1 (Eq. (60)) for MQ phase cycles SMχ (Table S-II). These results may
be evaluated to the expressions given in Tables I and II.

Table S-I: The generic closed analytical form of S�
l2m2λ2µ2
l1m1λ1µ1

(Eq. (32)) and S4l2m2λ2µ2
l1m1λ1µ1

(Eq. (35)) depending on each category of the second order average Hamiltonian term.
These expressions apply both for CNν

n and RNν
n sequences. The symbol “∧” represents

the mathematical AND operator. Q1 and Q2 are defined as in Eq. (15), e. g., Q1 =
exp{i2π(m1n − µ1ν)/N} for CNν

n sequences and Q1 = exp{i2π(m1n − µ1ν − λ1N/2)/N}
for RNν

n sequences.

S�
l2m2λ2µ2
l1m1λ1µ1

S4l2m2λ2µ2
l1m1λ1µ1

CNν
n/RNν

n
Selection Rules

C/R
Category

0 0 Q1 6= 1 ∧ Q2 6= 1 ∧ Q1Q2 6= 1 1

1
N(Q1 − 1)

= − Q2

N(Q2 − 1)
1
N

Q1 6= 1 ∧ Q2 6= 1 ∧ Q1Q2 = 1 2

1
N(Q2 − 1)

0 Q1 = 1 ∧ Q2 6= 1 ∧ Q1Q2 6= 1 3a

− 1
N(Q1 − 1)

0 Q1 6= 1 ∧ Q2 = 1 ∧ Q1Q2 6= 1 3b

N − 1
2N

1
N

Q1 = 1 ∧ Q2 = 1 ∧ Q1Q2 = 1 4
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Table S-II: The generic expressions for S�
µ2µ1

(Eq. (58)) and S4µ2µ1 (Eq. (60)) depending
on the category of the second order average Hamiltonian term for MQ phase cycles SMχ.
The symbol “∧” represents the mathematical AND operator. P1 and P2 are defined as in
Eq. (47), e. g., P1 = exp{−i2πµ1ν/N}.

S�
µ2µ1

S4µ2µ1

MQ
Selection Rules

MQ
Category

0 0 P1 6= 1 ∧ P2 6= 1 ∧ P1P2 6= 1 1

1
M(P1 − 1)

= − P2

M(P2 − 1)
1
M

P1 6= 1 ∧ P2 6= 1 ∧ P1P2 = 1 2

1
M(P2 − 1)

0 P1 = 1 ∧ P2 6= 1 ∧ P1P2 6= 1 3a

− 1
M(P1 − 1)

0 P1 6= 1 ∧ P2 = 1 ∧ P1P2 6= 1 3b

M − 1
2M

1
M

P1 = 1 ∧ P2 = 1 ∧ P1P2 = 1 4
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