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I. Analytical Expressions for 3Q terms

A. Symmetries of Scaling Factors

Here we examine the relationship between Ky,myaou, a0d Kiymq A 45 €., the dependence
) LimiAim loma a2
of the second-order scaling factors upon permutation of the two sets of quantum num-

bers comprised in the cross-term: {(lomaXapsa), (l1miAip1)} «— {(l1miAip1), (lamaAape)}.
This has consequences for the expressions of the symmetrized second-order scaling factors,

depending on the R/C category 2-4 that the symmetry-allowed term belongs. According to

. O A
Eqs. (30)-(35), the scaling factor depends on products of the sums Si,, \ and S\
A limiAip limiAip
. . . 0
with the corresponding integrals Ap,, . and A"\ . From Egs. (31) and (34) follow
limiAip limidip
directly that AEmQ Aopip 18 InVariant to exchange of the order of the terms, i.e.,
limidipn
O _ 40
Algmg)\gltz - Allml)\lﬂl (S_l)
limiAip lamaiapa
whereas no such symmetry exists for AL ; in the general case AL a
lama a2’ > “llama Az lymidipr
limiA1p limiAip lomaAa 2
. O AN .
Further, the expressions for the sum terms, S, 1 s and Slzm2 Nojia? depend on which R/C
limidipn limidip

category (2, 3a, 3b or 4) the recoupled term belongs (Table I and S-I):

A o B { 0  for class 1, 3a and 3b (S-2)
lamadapz - _
li%f/\f;ﬁ gm;gg; 1/N for class 2 and 4
*
0O O
Slgmz)\z/u [2] = (Sllml)qul [2]> (S_S)
limiAip lamaAap2
0 O
Slgmg)\g,lu [30’} = _Sl1m1>\1ul [3b] (8_4)
limiAip lamaAap2
| O
SIsz)\zuz [4] = Sllml)qul [4] (8_5)
limiAip lama A2 2

The number within brackets denotes the category of the term. Note that most of them are

invariant to exchange of the order of the two rows of subscripts (i.e., the order of (lamaAaps)

and (lymyA1p1)) in the cross-term, except SEmz)\zﬂz

limiAip

2, 3a, or 3b. Eq. S-4 means that if the term {(lomaAops), (limiA1p1)} belongs to class

if the term falls into R/C categories

3a, then {(lymiA1p1), (lamadape)} belongs to class 3b, and that the two sums are related

by sign reversal. The equations above imply that only I*igmz Aoz contributes to the scaling
limiAip
factor for terms of R/C categories 3a and 3b, whereas only K lomaAajia is contributing in the
limiAip



case of a category 4 term. From these expressions, combined with Egs. (31), (34), (30)

follow that the general form of the symmetrized scaling factor,

_—ni 0O O 0 A A A
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limiA1p limiAip loma Aoz limiAip limiAip limiAp loma o

(S-6)

reduces to one of the following expressions, depending on the relevant R/C category 2-4:
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B. 3Q Average Hamiltonian Frequencies

The explicit forms of the frequencies in Eq. (70) depends on the category 2-4 to which

the cross-term belongs. It follows from the general expressions of the symmetrized terms

that the frequency (D%j xik) may be written

O _ o0 O
. 2m222 2m121 2m922
—(igxik) _ —TTr 2m;21 2m22 2m} 21 ijxik
o = —5 A xk) (S-10)
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where Aﬁ,ﬁé,ﬁi’f) is given by a product of rotor-frame dipolar coupling components according

to

Alxik) 1 gig 1F [A;';JR + (a9 1" [A;’fLQ]R (5-12)

mami

Terms belonging to different categories (2, 3a, 3b or 4) provide different expressions; they
are obtained by substitution of the symmetrized scaling factors (Eqs. (S-7), (S-8) and (S-9)
into Eq. (S-11).

II. Heteronuclear Decoupling during 3Q Recoupling

Heteronuclear 'H-'3C decoupling is well-known to be problematic when simultaneously

applying 3C recoupling pulses.5'® It has been shown that a ratio between the nutation

S1,2

frequencies wi, /wS > 3 is required to reduce signal losses. The complications are

)



particularly acute when employing windowed pulse elements,3% as they require strong rf
recoupling pulses to minimize the pulse fraction. For 3Q recoupling, signal losses occur
otherwise due to increased interferences from ZQ dipolar and chemical shift interactions.
Therefore, the unfortunate condition w!’, /wS = 1 had to be employed in our experiments
at Bp =4.7T.

We observed that the heteronuclear decoupling performance was strongly dependent on
the spinning frequency. The experiments on dAla using low spinning speeds employed ” CW”
decoupling with slightly different amplitudes (optimized individually) during *C pulses and
windows of the R18§-based schemes at both magnetic fields. However, this approach gave
severe losses both for dAla and tyrosine at spinning frequencies w,. /27 > 7 kHz. For example,

using wl ~ 115 kHz CW decoupling on tyrosine resulted only in ~ 2% 3QF efficiency.

We found empirically that the heteronuclear decoupling performance could sometimes
be dramatically improved by changing the 'H rf phases synchronously with the various
fragments (i.e., pulses and windows) of the ¥C rf pulse sequence. Consequently, we op-
timized the sequence of 'H rf phases and amplitudes individually for each sample. In
the experiments of Fig. 6 for dAla, we employed the following sequence of phases:
(¢;,{,¢51,¢g, 52,¢g) = (0,m,0,7,7), where gi)g and qbgj denote the 'H rf phase dur-
ing the jth ¥C pulse and window of R, (f), respectively (see Eq. (75)). The following
phases gave best result for tyrosine: (0,7, 7,0,7). Many combinations provided similar
decoupling performance but were consistently reproducible and identical for (R18§)31 and
(R18§R183_7)31 on each sample. The reasons for the improved decoupling results are at the
moment not fully understood and further investigations along these lines are underway. No
improvements over CW decoupling were observed at lower spinning frequencies (w, /27 <7
kHz) at either magnetic field.

III. 3Q-1Q Correlation Experiments

To allow an unrestricted spectral width in w1, i.e., an arbitrary incrementation of £1, the
3Q recoupling sequence must fulfil the condition that all its recoupled second-order 3Q terms
{(l2, ma, A3, p2), (I1,m1, A1, u1) } have equal ratios (mg + my)/(u2 + p1). The requirement
for second-order symmetry-based correlation spectroscopy is analogous to that discussed in
Refs. 5578 for first order recoupling scenarios. For instance, from Table ITI follows that R8]*
and C7, " do not meet this condition (and neither do (SS’)3' schemes in general) whereas
R18§ and R14§ do. t; may then be incremented arbitrarily, provided that the following

t1-dependent phase-shift is applied to the reconversion pulse block

T mo + mq
Droc(t1) = -k + ———w,t S-13
rec( 1) 3 L2+ 1 Wrly ( )
where the spin and spatial components depend on the recoupled second-order terms and &

is any integer.



In the 3Q-1Q correlation experiment of Fig. 10, the TPPI scheme®? was used to obtain
a purely absorptive 2D spectrum with sign discrimination along both spectral The spectral
widths (after TPPI processing) were 25 kHz and 20 kHz in the first and second spectral

dimensions, and (128x350) time-points were recorded.

IV. Second-Order Terms: Generic Analytical Expressions

Here we present the generic closed analytical sums derived from ng s (B (32))
limidip
and Sl?mg)\gp,g (Eq. (35) in the case of CN} and RN} sequences (Table S-I) and for SEzm
limiAip

(Eq. (58)) and Sﬁzm (Eq. (60)) for MQ phase cycles SMX (Table S-II). These results may

be evaluated to the expressions given in Tables I and II.

Table S-I: The generic closed analytical form of SEmQ)\Qm (Eq. (32)) and S

lomaXapo

limiAip limiAip
(Eq. (35)) depending on each category of the second order average Hamiltonian term.
These expressions apply both for CN}/ and RN; sequences. The symbol “A” represents
the mathematical AND operator. Q; and Qg are defined as in Eq. (15), e. g., Q1 =
exp{i2w(min — pyv)/N} for CN} sequences and Q; = exp{i2n(min — p1v — Ay N/2)/N}

for RN,/ sequences.

g0 gA CN}Y/RN} C/R
lamadapa lamaXapo Selection Rules Category
limaAipn limidip

0 0 Q#FL N Q#F1 N Q1D #1 1
1 Q5 1
_— === — 1A 1A =1 2
N@ =) N(@s = 1) N Q1 # Qo # Q19s
1
—_ 0 =1A 1A 1 3a
NGy~ 1) Q1 Qo # Q192 #
1
—_— 0 1A =1 A 1 3b
N© = 1) Q1 # Qo Q1092 #
N -1 1
W N 91:1/\Q2:1/\Q1Q2:1 4




Table S-II: The generic expressions for SEQ i (Eq. (58)) and Sﬁ u (Eq. (60)) depending
on the category of the second order average Hamiltonian term for M(Q phase cycles SMX.
The symbol “A” represents the mathematical AND operator. P; and Ps are defined as in

Eq. (47), e. g., P1 = exp{—i2muv/N}.

SEgm Sﬁwl Selectli\(/flg2 Rules Calt\ggory
0 0 PiALAPALA PP AL |
M(lel—l)__M(;?—l) % PrAL APy AL A PyPy=1 2
M(Pi—l) 0 Pi=1 A Potl A PPyl 3a
_]\m 0 PiALAPr=1APP#L 3h
]\2\}1 % Pi=1APyi=1A PPy=1 4
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