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The average Hamiltonian theory~AHT! of several classes of symmetry-based radio-frequency pulse
sequences is developed to second order, allowing quantitative analyses of a wide range of
recoupling and decoupling applications in magic-angle-spinning solid state nuclear magnetic
resonance. General closed analytical expressions are presented for a cross term between any two
interactions recoupled to second order AHT. We classify them into different categories and show
that some properties of the recoupling pulse sequence may be predicted directly from this
classification. These results are applied to examine a novel homonuclear recoupling strategy,
effecting a second order average dipolar Hamiltonian comprising trilinear triple quantum~3Q! spin
operators. We discuss general features and design principles of such 3Q recoupling sequences and
demonstrate by numerical simulations and experiments that they provide more efficient excitation of
13C 3Q coherences compared to previous techniques. We passed up to 15% of the signal through a
state of 3Q coherence in rotating powders of uniformly13C-labeled alanine and tyrosine. Second
order recoupling-based13C homonuclear 3Q correlation spectroscopy is introduced and
demonstrated on tyrosine. ©2004 American Institute of Physics.@DOI: 10.1063/1.1738102#

I. INTRODUCTION

One reason for the success of solid state nuclear mag-
netic resonance~NMR! in determining molecular structure
and dynamics is the high control offered to selectively pre-
serve and suppress various nuclear spin interactions during
the experiment.1–3 The manipulations may broadly be classi-
fied into recoupling, decoupling and preservation of a given
interaction.

Decouplingleads to spin dynamics in the absence of a
given interaction Hamiltonian. One example is magic-angle
spinning~MAS!, carried out by rapid rotation of the sample
at the ‘‘magic angle’’ (um5arctan&) with respect to the
external magnetic field direction. MAS averages out aniso-
tropic interactions transforming under rotations as second
rank tensors, e.g., chemical shift anisotropies~CSA! and di-
polar couplings.Recoupling,4,5 usually effected by applica-
tion of radio-frequency~rf! pulses, selectively recovers a cer-
tain anisotropy under MAS conditions but may also involve
the transformation of an interaction into a form different
from its initial high-field spin Hamiltonian. An example is in
multiple-quantum~MQ! NMR on spins-1/2,6–8 which usu-
ally employs a dipolar Hamiltonian comprising double-
quantum~2Q! spin operators (S1S1), whereas the high-field
dipolar Hamiltonian is proportional to zero-quantum~ZQ!
operators (S2S1).

In the framework of average Hamiltonian theory
~AHT!1,2 the spin dynamics is governed by a time-
independent average Hamiltonian~AH!, H̄, representing the
effective interaction resulting from the commensurate use of
MAS and rf pulse sequences over a periodT. Employing a
perturbation order indexing starting at one9–13 the average
Hamiltonian may be expressed according to the Magnus
expansion,14

H̄5H̄ ~1!1H̄ ~2!1H̄ ~3!1¯ ~1!

with the first two orders of perturbation given by

H̄ ~1!5
1

T E
t0
0

t0
0
1T

dt H̃~ t !, ~2!

H̄ ~2!5~2iT !21E
t0
0

t0
0
1T

dt8E
t0
0

t8
dt@H̃~ t8!,H̃~ t !#. ~3!

Heret0
0 denotes the start of the pulse sequence andH̃(t) is an

interaction frame Hamiltonian, related to the laboratory-
frame HamiltonianH(t) by a unitary transformation induced
by the rf pulses.

The present work focuses on the theoretical development
and design of so-called symmetry-based RNn

n and CNn
n pulse

sequences.9,11–13,15–34 Such schemes directly exploit the
unique response of each spin interaction to the combined
modulations of MAS and rf pulses. The former transforms
the spatial parts of the Hamiltonian, whereas the latter modu-
lates its spin parts.1–3 By choice of three integer symmetry

a!Author to whom correspondence should be addressed. Electronic mail:
mattias@physc.su.se

JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 24 22 JUNE 2004

117260021-9606/2004/120(24)/11726/20/$22.00 © 2004 American Institute of Physics

Downloaded 08 Jun 2004 to 131.174.137.162. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1738102


numbers~N, n, n! one can selectively recouple a given part
of an interaction, while suppressing its other parts, as well as
other interactions.13 While the underlying AHT of symmetry-
based pulse sequences is well-developed to first order AHT,
allowing quantitative calculations of the size of the re-
coupled interactions,11–13,15,19it is currentlyonly qualitative
to higher orders. Here we extend the second order average
Hamiltonian theory of symmetry-based schemes toquantita-
tive evaluations of recoupled second order terms and develop
a theoretical framework forMQ phase cycles6,10,12,35 and
their combination with phase inversion supercycles.13,23 It
may potentially be applied to analyze a wide range of
symmetry-based recoupling and decoupling problems.

In most situations, the higher order Magnus expansion
terms are undesirable and targets for decoupling.1,2 Our re-
sults assist in dealing with such problems both by predicting
the suppression of certain classes of terms up to second order
AHT, as well as providing a quantitative assessment of the
sizes of the remaining terms. However, here we adopt a dif-
ferent viewpoint in that certainsecond order terms are de-
sirable and actively recoupled, thereby shifting the spotlight
onto the second order, rather than first order average Hamil-
tonian. Along these ideas, building on similar approaches for
order-selective MQC excitation in static samples,6 we design
triple-quantum~3Q! selective pulse sequences useful in the
context of13C spins undergoing MAS. By this approach, a
spin ensemble state of 3QC is created directly from equilib-
rium longitudinal magnetization.35

High-order MQC excitation involving1H spins under
MAS conditions is fairly straightforward,35–41 as the homo-
nuclear dipolar interactions are dominant and chemical shift
interactions are small. However, it is a challenging task for
applications to less magnetic nuclei, e.g.,13C, that addition-
ally have a large spread of chemical shift interactions. Few
reports exist of excitation of13C MQC of orders higher than
two in samples undergoing MAS.30,42–453QC excitation ex-
ploiting ‘‘second order recoupling’’ requires tight control of
the various terms of the Magnus expansion, as it demands
efficient suppression of all dipolar and chemical shift contri-
butions to first order; these terms are about an order of mag-
nitude larger than the desired second order average Hamil-
tonian 3Q terms. This is achieved by RNn

n or CNn
n sequences

combined with MQ phase cycles and phase inversion super-
cycles.

Despite the challenges encountered in the design of 3Q
selective sequences, the reward is a highly efficient mecha-
nism of 3QC excitation in powders: this is crucial since the
NMR signal intensity is directly proportional to the triple-
quantum filter~3QF! efficiency. Theoretically, about 55% of
the total signal may be recovered in a triple-quantum filtra-
tion ~3QF! experiment by this broadband approach. This is
more than three times higher than offered by previous tech-
niques for 3Q excitation among spins-1/2 under MAS
conditions30,42 and comparable to 2QF efficiencies from 2Q
recoupling techniques in common use. Experimentally, we
have passed 10–15% of the signal through 3QC in uniformly
13C labeled amino acids, which is about three times larger
than that achieved by the previously best broadband option,42

and slightly higher than the result of a recently introduced

3Q frequency-selectiveexcitation technique.30

This paper is organized as follows: Section II introduces
the pulse sequences employed in this work. Section III pre-
sents the second order average Hamiltonian theory of these
schemes from a general standpoint, which is subsequently
applied in the context of 3Q recoupling in Sec. IV, where the
3Q average Hamiltonian and its resulting spin dynamics is
derived and discussed. Section V describes the engineering
and evaluation of 3Q recoupling sequences by numerical
simulations, and the analytical predictions of Sec. IV are
tested. In particular, we focus on numerical evaluations of
one MQ phase cycle@denoted (R183

7)31] and supercycles
thereof under experimentally realistic scenarios, including
the effects of chemical shift interactions and rf amplitude
errors. Next follows an experimental section, where
(R183

7)31 is used for 13C 3QC excitation in uniformly
13C-labeled L-alanine and L-tyrosine and second order re-
coupling is demonstrated in the context of13C 3QC–1QC
homonuclear correlation spectroscopy. The results are finally
summarized in the concluding section.

II. PULSE SEQUENCES

We will build rf pulse schemes around two pulse se-
quence classes, denoted RNn

n ~Refs. 12, 13, and 19! and
CNn

n .11,13,15,16,18,46They are defined by three integer ‘‘sym-
metry numbers’’~N, n, n! and a train of pulsesEq @see Fig.
1~a!#, derived from a basic elementE0 of duration tE

5ntr /N, wheret r52p/v r is the rotational period andv r

the spinning frequency. The two pulse sequence classes are
distinguished by the properties ofE0 and how the RNn

n and
CNn

n sequence is built from the basic element. An RNn
n

scheme@Fig. 1~b!# is constructed from an inversion element
E0[R, i.e., a composite pulse effecting a net rotation ofp
around the rotating framex axis. Another elementR8 may be
generated fromR by reversing the sign of all its rf phases.
The RNn

n scheme is formed by repeating the pair
Rpn/NR2pn/N8 N/2 times. A CNn

n scheme, shown in Fig. 1~c!,
is built around a cyclic pulse train (E0[C), meaning that in
the absence of other spin interactions, the rf pulses ofC re-
turn the spins to their original states at the completed
element.1 The CNn

n sequence is obtained by concatenatingN
phase-shifted cycles, such that theqth element of the se-
quence,Cq , has an overall phase shift 2pqn/N. In the fol-
lowing, we will employ the shorthand notationS[RNn

n or
S[CNn

n . Given a sequenceS, S8 is generated by reversing
the sign of all phases within the basic element, as well as the
sign of the symmetry numbern:13,23,46 S8[RNn

2n or S8
[CNn

2n .
Generally, only a subset of the average Hamiltonian

terms generated byS are desirable. The unwanted ones may
be suppressed using supercycles, built from a concatenation
of completed RNn

n or CNn
n sequences, combined according to

certain patterns. Here we will exploit two such supercycle
schemes:MQ phase cycles6,10,35@Fig. 1~d!# andphase inver-
sion supercycles13,23,46 @Fig. 1~e!#. An MQ phase cycle,
SMx, closely resembles a CNn

n sequence, withM replacingN
andx replacingn: SMx is constructed by concatenation ofM
phase-shifted sequencesSp , such that thepth element has an
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overall phase shift 2ppx/M , with p50,1,...,M21. The re-
sulting MQ phase cycle extends over the intervalTSM

5nMt r . It is denoted (RNn
n)Mx or (CNn

n)Mx, depending
on the identity ofS. The only restriction is thatS should be
cyclic, which is fulfilled both by completed RNn

n and CNn
n

sequences. A phase inversion supercycle constitutes the pair
SS8, denoted RNn

nRNn
2n and CNn

nCNn
2n for S[RNn

n or S
[CNn

n , respectively.
Nestedsupercycles may be formed by combining MQ

phase cycles and phase inversion supercycles.13,23The result
of first forming a phase inversion sequenceSS8 and subse-
quently applying MQ phase cycling is denoted (SS8)Mx and
depicted in Fig. 1~f!. It is constructed by applying an incre-
menting phase shift~reversed in sign for odd elements! to

each element in a series of alternating sequencesS andS8,

~SS8!Mx[S0S08S2px/MS2~2px/M !8 S4px/M

3S2~4px/M !8 ...S@2p~M21!x#/MS@22p~M21!x#/M8 .

~4!

This combination of MQ phase-cycling and phase-inversion
supercycling is slightly different from that presented in Refs.
13 and 23, which corresponds to

@SS8#0@SS8#2px/M@SS8#4px/M ...@SS8#@2p~M21!x#/M .
~5!

As discussed below, the two supercycles produce equivalent
results in special cases, depending on the properties of the
sequenceS.

III. THEORY

A. Spin interactions and Hamiltonians

The HamiltonianHL of a spin interactionL is a product
of a componentm of a l th rank spatial irreducible spherical
tensorAL, and a componentm of a lth rank spin irreducible
spherical tensor operatorTL. The spin and spatial parts are
denotedAlm

L andTlm
L , respectively, with the components tak-

ing integer values in the range2 l<m< l and 2l<m<l.
The homonuclear dipolar interaction is second rank with re-
spect to rotations, i.e., of its spatial and spin rank arel 52
and l52. Detailed classifications of the rotational symme-
tries of other spin interactions may be found in Refs. 1, 2, 13,
and 47.

Restricting the analysis to coupled spins-1/2, the total
laboratory-frame Hamiltonian is the sum over all spin inter-
actions of the system and the rf HamiltonianH rf(t),

H~ t !5H rf~ t !1 (
L,l,l ,m

Hlml0
L ~ t !, ~6!

H rf(t) represents the rf field Hamiltonian and each spin
Hamiltonian is uniquely specified by a quartet of integers
( l ,m,l,m) with the restrictionm50 in the high-field limit.
Explicit expressions for the Hamiltonians may be found in
Refs. 1, 2, 13, and 47. Each Hamiltonian term may be ex-
pressed as a product of a spin tensor component and a cor-
responding interaction frequencyv lm

L (t),

Hlml0
L ~ t !5v lm

L ~ t !Tl0
L ~7!

with

v lm
L ~ t !5@Alm

L #Rdm0
l ~bRL!exp$2 im~aRL

0 2v r t !% ~8!

@Alm
L #R is themth component of the spatial tensor in a rotor

frameR fixed on the sample holder. Thez axis of this frame
is inclined at the anglebRL with respect to the static mag-
netic field direction;bRL5arctan& for exact magic-angle
spinning.dm0

l (b) is a reduced Wigner element,48 and aRL
0

defines the position of the rotor at time pointt50. The rotor-
frame component of the interactionL is related to that in the
principal axis systemP by a sequence of rotations, involving
an intermediate molecular frameM fixed on an arbitrary mo-
lecular fragment,

FIG. 1. The hierarchy of the various symmetry-based pulse schemes em-
ployed.~a! A general rotor-synchronized pulse sequence built ofN elements
E0 ,E1 ,...,EN21 , derived from a basic elementE0. The indicated time-points
are discussed in Sec. III C 1:~b! RNn

n sequence,~c! CNn
n sequence. They are

abbreviatedS and used in supercycles, shown in~d!–~f!. ~d! The structure of
an MQ phase cycle,SMx. ~e! A phase inversion supercycle,SS8, where the
sequenceS8 ~shaded! is obtained by sign reversal of all phases ofS. ~f! A
nested MQ phase and inversion supercycle, (SS8)Mx. ~g! Pulse scheme for
a triple-quantum filtration~3QF! experiment~Refs. 30, 35, and 42! incorpo-
rating anSMx sequence for excitation and reconversion of 3QC.
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@Alm
L #R5 (

m8,m952 l

l

@Alm9
L

#PDm9m8
l

~VPM
L !dm8m

l
~bMR!

3exp$2 i ~m8aMR1mgMR!%. ~9!

In the case of the homonuclearS–S through-space dipolar
interaction between two spinsj andk, only @A20

jk #P5A6bjk is
nonzero, with the coupling constantbjk related to the inter-
nuclear distancer jk and the gyromagnetic ratiogS by bjk

52(m0/4p)gS
2\r jk

23.

B. 3Q recoupling strategies

Here we outline our strategy for using the schemes of
Fig. 1 in the context of homonuclear 3Q dipolar recoupling,
assuming a system of~at least! three coupled spins-1/2~la-
beled i, j , and k!. The goal is to design a pulse sequence
whose average dipolar Hamiltonian comprisesolely the op-
eratorsT363

i jk ;Si
6Sj

6Sk
6 , multiplied with a factor propor-

tional to products of dipolar coupling constants. However,
such tri linear spin operators may not be present in the first
order average HamiltonianH̄ (1) as it, according to Eq.~2!,
corresponds to the time average of a sequence of unitary
transformations of the dipolar Hamiltonian, which itself is
proportional to atwo-spin operatorT2m . Nevertheless, the
second order AH@Eq. ~3!# may comprise trilinear spin op-
erators, originating from commutators between spin opera-
tors from different pairs of couplings within the spin system,
e.g., @T212

i j ,T211
ik #;T313

i jk . Any pulse sequence generating
such terms, among others, is referred to as giving3Q recou-
pling. If only 3Q operators are present~up to a certain order
of the Magnus expansion! the sequence is referred to as be-
ing 3Q selective. Hence, the aim of 3Q selective recoupling
is to arrange that all first order AH contributions vanish,
together with all terms inH̄ (2), except those resulting from
commutators@T2m2

i j ,T2m1

ik # obeyingm11m2563.

An MQ phase cycleSMx restricts the average Hamil-
tonian to only comprise terms having spin operator compo-
nentsxm being integral multiples ofM.6,35 The procedure is
formally similar to coherence selection in NMR
experiments,49 but distinct in that the MQ phase cycling op-
erates on the spin Hamiltonian instead of on the spin en-
semble coherences. Hence,S361 schemes effect 3Q recou-
pling sinceH̄ (2) terms withm11m253Z ~Z is any integer!
are recoupled. However, because zero-quantum~ZQ! terms
with m11m250 are also symmetry allowed, the recoupling
is not 3Q selective but 3Q/ZQ selective. The undesired ZQ
terms may, however, be removed by a nested (SS8)361

scheme, a (SS8)361 scheme is 3Q selective to second order.
The following sections~III C–III F ! give ageneralsec-

ond order average Hamiltonian description of the various
pulse schemes, subsequently applied to 3Q recoupling in
Sec. IV.

C. Average Hamiltonian theory for C Nn
n and RNn

n

sequences

1. Interaction frame symmetry

The rotor-synchronized pulse sequence starts at time
point t0

0, as illustrated in Fig. 1~a!. The qth element (Eq)

starts attq
0, and an arbitrary time point therein is denotedtq

(tq
0<tq,tq11

0 ), related to that within thefirst element
through the time translationtq5t01qtE . Time points within
the basicelementE0 are denotedt0, i.e., 0<t0,tE , related
to t0 within the first element of the sequence byt05t02t0

0.12

The rf propagatorU rf(tq ,t0
0), active from the starting

time point t0
0 out to tq within the qth element, may be ex-

pressed as three consecutive rotation operatorsU rf(tq ,t0
0)

5Rz(aq)Ry(bq)Rz(gq) involving three time dependent rf
Euler angles (aq ,bq ,gq)5(a(tq),b(tq),g(tq)).11–13,46

Analogously, the rf propagator from the starting time point
t50 of the basic element up tot0 may be expressed
U rf(t

0,0)5Rz(a
0)Ry(b

0)Rz(g
0).

Prior to application of AHT, the spin interaction terms
are transformed into the interaction frame of the rf field ac-
cording to

H̃~ tq!5U rf~ tq ,t0
0!†H~ tq!U rf~ tq ,t0

0! ~10!

resulting in the following interaction frame Hamiltonian at
time point tq :

H̃~ tq!5 (
L,l ,m,l,m

H̃ lmlm
L ~ tq!5 (

L,l ,m,l,m
ṽ lmlm

L ~ tq!Tlm
L .

~11!

Here ṽ lmlm
L (tq) is given by12

ṽ lmlm
L ~ tq!5@Alm

L #R exp$2 imaRL
0 %dm0

l ~bRL!

3dm0
l ~2bq!exp$ imgq1 imv r tq% ~12!

with the Euler angles (aq ,bq ,gq) related to the pulse se-
quence symmetry classes according to12

bq5H b0 for CNn
n ,

b01qp for RNn
n ,

~13!

gq5g02
2pn

N
q. ~14!

Using the substitutions

Q5exp$ i2pQ/N%, ~15!

Q5H mn2mn for CNn
n ,

mn2mn2
lN

2
for RNn

n ,
~16!

the symmetry-based sequences impose the following
interaction-frame time symmetry:

ṽ lmlm
L ~ tq!5Qqṽ lmlm

L ~ t0!. ~17!

Hence, the interaction frame frequency at the time pointtq

within the qth pulse element of the sequence is related tot0

within its first element by a simple exponential function in-
volving the spin as well as spatial components and the sym-
metry numbers (N,n,n) of the pulse scheme.
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2. First order average Hamiltonian

In order to obtain a time-independent average Hamil-
tonian, we apply the Magnus expansion14 to the interaction
frame Hamiltonian Eq.~11!. The first order AH is calculated
from Eq. ~2! giving

H̄ ~1!5 (
L,l ,m,l,m

H̄ lmlm
L 5 (

L,l ,m,l,m
v̄ lmlm

L Tlm
L ~18!

with

v̄ lmlm
L 5T21E

t0
0

t0
0
1T

dt ṽ lmlm
L ~ t !. ~19!

The periodicity in Eq.~17! allows expressingv̄ lmlm
L accord-

ing to

v̄ lmlm
L 5Slmlmk lmlm@Alm

L #R exp$2 im~aRL
0 2v r t0

0!%, ~20!

wherek lmlm is a scaling factor13 of the recoupled term with
quantum numbers (l ,m,l,m). The sumSlmlm only depends
on the quantum numbers (l ,m,l,m) and the symmetry num-
bers (N,n,n) of the pulse sequence; it gives rise to thefirst
order selection rulesaccording to11,13,15,19

Slmlm5
1

N (
q50

N21

Qq5H 0 if QÞ1⇔QÞNZ,

1 if Q51⇔Q5NZ,
~21!

whereZ is any integer~including zero!. Depending on the
class of symmetry-based pulse sequence, they may be trans-
formed to11,13,15,19

H̄ lmlm
L 5Slmlm50 if H mn2mnÞNZ for CNn

n ,

mn2mnÞ
N

2
Zl for RNn

n .
~22!

HereZl is an integer with the same parity asl: for evenl,
Zl represents any even integer, whereas it corresponds to any
odd integer ifl is odd. The scaling factork lmlm @Eq. ~20!#
depends on the quantum numbers (l ,m,l,m) of the re-
coupled term, the type of pulse sequence (CNn

n or RNn
n) and

its symmetry numbers (N,n,n), as well as on the pulses and
phases of the basic pulse elementE0,

k lmlm5H dm0
l ~bRL!Kmlm for CNn

n ,

dm0
l ~bRL!expH 2 im

pn

N J Kmlm for RNn
n .

~23!

The factorKmlm is defined with respect to the basic element
E0 according to

Kmlm5tE
21E

0

tE
dt0 dm0

l ~2b0!exp$ i ~mg01mv r t
0!%,

~24!

where the symbolst0, b0, andg0 refer to time points and rf
Euler angles withinE0, defined explicitly in Ref. 12. The
calculation ofKmlm for arbitrary elementsE0 is discussed in
Ref. 12 and extensions to second order scaling factor calcu-
lations are presented in the Appendix.

3. Second order average Hamiltonian

The second order AH may be written

H̄ ~2!5 (
L2 ,l 2 ,m2 ,l2 ,m2
L1 ,l 1 ,m1 ,l1 ,m1

H̄
l 1m1l1m1

l 2m2l2m2

L23L1 , ~25!

where the sum is taken over all second order cross terms
between a term of interactionL2 with quantum numbers
( l 2 ,m2 ,l2 ,m2), and that of interactionL1 with quantum
numbers (l 1 ,m1 ,l1 ,m1). The individual cross terms are
given by

H̄
l 1m1l1m1

l 2m2l2m2

L23L1
5v̄

l 1m1l1m1

l 2m2l2m2

L23L1
@Tl2m2

L2 ,Tl1m1

L1 # ~26!

with the interaction frequencies

v̄
l 1m1l1m1

l 2m2l2m2

L23L1
5~2iT !21E

t0
0

t0
0
1T

dt8E
t0
0

t8
dt ṽ l 2m2l2m2

L2 ~ t8!

3ṽ l 1m1l1m1

L1 ~ t !. ~27!

The range of the two-dimensional time integral is shown in
Fig. 2. The symmetry relationship of the interaction-frame
terms@Eq. ~17!# leads to

ṽ l 2m2l2m2

L2 ~ tq8!ṽ l 1m1l1m1

L1 ~ tq!

5Q2
q8Q1

qṽ l 2m2l2m2

L2 ~ t08!ṽ l 1m1l1m1

L1 ~ t0! ~28!

with Q2 andQ1 obtained from Eqs.~15! and ~16!, e.g.,Q2

5exp$i2p(m2n2m2n)/N% for CNn
n sequences. From Eqs.

~27!and~28! follows that the second order average frequency

FIG. 2. The two-dimensional integration area of Eq.~27!, with a selection of
time points and the summation indicesq andq8 indicated.
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term v̄
l 1m1l1m1

l 2m2l2m2

L23L1 may be written

v̄
l 1m1l1m1

l 2m2l2m2

L23L1
5t rk

l 1m1l1m1

l 2m2l2m2
@Al 2m2

L2 #R@Al 1m1

L1 #R

3exp$2 i ~m21m1!~aRL
0 2v r t0

0!%. ~29!

The dimensionlesssecond order scaling factork
l 1m1l1m1

l 2m2l2m2 may

be decomposed into two components,

k
l 1m1l1m1

l 2m2l2m2
5k

l 1m1l1m1

l 2m2l2m2

h
1k

l 1m1l1m1

l 2m2l2m2

n
, ~30!

TABLE I. Expressions forS
l 1m1l1m1

l 2m2l2m2

h
@Eq. ~32!# andS

l 1m1l1m1

l 2m2l2m2

n
@Eq. ~35!# provided by the different R/C-categories

1–4 of second order average Hamiltonian terms in the case of RNn
n and CNn

n sequences.Q1 andQ2 are defined
as in Eq.~16!, e.g.,Q15m1n2m1n for CNn

n sequences andQ15m1n2m1n2l1N/2 for RNn
n sequences. The

following demonstrates the way to read the selection rules for the first row as an example:m1n2m1nÞNZ for
CNn

n sequences andm1n2m1nÞ(N/2)Zl1
for RNn

n sequences.

S
l 1m1l1m1

l 2m2l2m2

h
S

l 1m1l1m1

l 2m2l2m2

n

Selection rules
C/R

categoryCNn
n RNn

n

m1n2m1n ÞNZ Þ
N

2
Zl1

AND

0 0 m2n2m2n ÞNZ Þ
N

2
Zl2

1

AND

(m11m2)n2(m11m2)n ÞNZ Þ
N

2
Zl11l2

2i
exp$2ipQ1 /N%

2N sin$pQ1 /N%
m1n2m1n ÞNZ Þ

N

2
Zl1

AND

5
1

N
m2n2m2n ÞNZ Þ

N

2
Zl2

2

AND

i
exp$ipQ2 /N%

2N sin$pQ2 /N%
(m11m2)n2(m11m2)n 5NZ 5

N

2
Zl11l2

m1n2m1n 5NZ 5
N

2
Zl1

AND

2i
exp$2ipQ2 /N%

2N sin$pQ2 /N%
0 m2n2m2n ÞNZ Þ

N

2
Zl2

3a

AND

(m11m2)n2(m11m2)n ÞNZ Þ
N

2
Zl11l2

m1n2m1n ÞNZ Þ
N

2
Zl1

AND

i
exp$2ipQ1 /N%

2N sin$pQ1 /N%
0 m2n2m2n 5NZ 5

N

2
Zl2

3b

AND

(m11m2)n2(m11m2)n ÞNZ Þ
N

2
Zl11l2

m1n2m1n 5NZ 5
N

2
Zl1

AND

N21

2N

1

N
m2n2m2n 5NZ 5

N

2
Zl2

4

AND

(m11m2)n2(m11m2)n 5NZ 5
N

2
Zl11l2
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where each contribution,k
l 1m1l1m1

l 2m2l2m2

h
andk

l 1m1l1m1

l 2m2l2m2

n
, results from

the integration over rectangular and triangular areas, respec-
tively ~Fig. 2!. The rectangular part is given by

k
l 1m1l1m1

l 2m2l2m2

h
5

n

2i
S

l 1m1l1m1

l 2m2l2m2

h
A

l 1m1l1m1

l 2m2l2m2

h
, ~31!

with the sum

S
l 1m1l1m1

l 2m2l2m2

h
5

1

N2 (
q851

N21

Q2
q8 (

q50

q821

Q1
q . ~32!

It can be evaluated to the closed expressions shown in Table
I and the supplementary material50 and will be discussed
further in the next section. The termA

l 1m1l1m1

l 2m2l2m2

h
in Eq. ~31!

corresponds to the product of thefirst orderscaling factors of
the two interactionL2 and L1 @each calculated from Eq.
~23!#:

A
l 1m1l1m1

l 2m2l2m2

h
5k l 2m2l2m2

k l 1m1l1m1
. ~33!

The triangular part in Eq.~30! is given by

k
l 1m1l1m1

l 2m2l2m2

n
5

n

2i
S

l 1m1l1m1

l 2m2l2m2

n
A

l 1m1l1m1

l 2m2l2m2

n
~34!

with

S
l 1m1l1m1

l 2m2l2m2

n
5

1

N2 (
q50

N21

Q2
qQ1

q. ~35!

This sum may be represented as the closed analytical forms
shown in Table I and the supplementary material.50 Depend-
ing on the type of pulse sequence, the termA

l 1m1l1m1

l 2m2l2m2

n
is given

by

A
l 1m1l1m1

l 2m2l2m2

n
55

dm20
l 2 ~bRL!dm10

l 1 ~bRL!K
m1l1m1

m2l2m2 for CNn
n ,

dm20
l 2 ~bRL!dm10

l 1 ~bRL!expH 2 i ~m21m1!
pn

N J K
m1l1m1

m2l2m2 for RNn
n

~36!

with the factorK
m1l1m1

m2l2m2 representing an integral over the basic

elementE0, according to

K
m1l1m1

m2l2m2
5tE

22E
0

tE
dt08E

0

t08
dt0 dm20

l2 ~2b08!

3exp$ i ~m2g081m2v r t
08!%

3dm10
l1 ~2b0!exp$ i ~m1g01m1v r t

0!%. ~37!

The calculation ofK
m1l1m1

m2l2m2 for arbitrary elementsE0 is dis-

cussed in the Appendix.

4. Classification of second order average
Hamiltonian terms

Different cases have to be distinguished when the sums
are evaluated in Eqs.~32! and ~35!, depending on the expo-
nents in Eq.~16! that dictatewhich selection rules are ful-
filled. A second order cross term with pairs of quantum num-
bers$( l 2 ,m2 ,l2 ,m2),(l 1 ,m1 ,l1 ,m1)% may fall into one of
five R/C categoriesdenoted 1, 2, 3a, 3b, and 4. Table I sum-
marizes the expressions for the sumsS

l 1m1l1m1

l 2m2l2m2

h
andS

l 1m1l1m1

l 2m2l2m2

n
;

these are obtained from the generic forms given in the
supplementary material.50

In case of the R/C-category 1, both sums vanish and the
second order term is suppressed: the selection rules are those
previously presented in Refs. 11, 12, and 19. In the case of
CNn

n sequences they can be transformed to

H̄
l 1m1l1m1

l 2m2l2m2

L23L1
5S

l 1m1l1m1

l 2m2l2m2

h
5S

l 1m1l1m1

l 2m2l2m2

n
50

if 5
m1n2m1nÞNZ
AND
m2n2m2nÞNZ
AND
~m21m1!n2~m21m1!nÞNZ

~38!

whereZ is any integer, not necessarily the same for all in-
equalities. In the case of RNn

n sequences they correspond to

H̄
l 1m1l1m1

l 2m2l2m2

L23L1
5S

l 1m1l1m1

l 2m2l2m2

h
5S

l 1m1l1m1

l 2m2l2m2

n
50

if 5
m1n2m1nÞ N

2Zl1

AND

m2n2m2nÞ N
2Zl2

AND

~m21m1!n2~m21m1!nÞ N
2 Zl21l1

~39!

whereZl represents any integer with the same parity asl.
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If a second order term belongs to one of the R/C-
categories 2, 3a, 3b or 4 it issymmetry allowedand has to be
calculated explicitly. The symmetry-allowed second order
terms can be further classified according to the selection
rules obeyed for the two involved spin interactions for the
corresponding first order average Hamiltonians. In the case
of R/C-category 2,both terms with the quantum numbers
( l 2 ,m2 ,l2 ,m2) and (l 1 ,m1 ,l1 ,m1) are suppressed to first

orderAHT. Then, both sums,S
l 1m1l1m1

l 2m2l2m2

h
andS

l 1m1l1m1

l 2m2l2m2

n
, are dif-

ferent from zero and their explicit expressions depend on the
spatial and spin quantum numbers, as well as the symmetry
numbers of the pulse sequence~see Table I!. If a second
order term belongs to one of the R/C-categories 3a or 3b, one
of the two first order terms,either ( l 2 ,m2 ,l2 ,m2) or
( l 1 ,m1 ,l1 ,m1), is symmetry allowed whereas the other is
suppressed. The sumS

l 1m1l1m1

l 2m2l2m2

n
vanishes in this case, only

leaving the rectangular contributionS
l 1m1l1m1

l 2m2l2m2

h
. In case of

R/C-category 4,both first order terms, (l 2 ,m2 ,l2 ,m2) and
( l 1 ,m1 ,l1 ,m1), aresymmetry allowedto first order AHT. In
general, both sumsS

l 1m1l1m1

l 2m2l2m2

h
and S

l 1m1l2m1

l 2m2l2m2

n
are nonzero, but

their expressions depend neither on the quantum numbers of
the terms, nor on the symmetry numbers (n,n) of the pulse
sequence~Table I!.

D. Symmetrized second order average
Hamiltonian terms

Consider the two second order average Hamiltonian

termsH̄
l 1m1l1m1

l 2m2l2m2

L23L1 , andH̄
l 2m2l2m2

l 1m1l1m1

L13L2 , related by a simultaneous ex-

change of the interactionsL2 andL1 , as well as theorder of
the two sets of quantum numbers (l 2 ,m2 ,l2 ,m2) and
( l 1 ,m1 ,l1 ,m1). Both cross terms are simultaneously sym-
metry allowed or suppressed and they appear pairwise in the
sum of Eq.~25!. Therefore, it is convenient to express the
second order AH as a sum ofsymmetrizedterms according to

H̄ ~2!5 (
interaction

pairs

H̄
~
l 1m1l1m1

l 2m2l2m2!

~L23L1!
, ~40!

with

H̄
~
l 1m1l1m1

l 2m2l2m2!

~L23L1!
5H̄

l 1m1l1m1

l 2m2l2m2

L23L1
1H̄

l 2m1l2m2

l 1m1l1m1

L13L2 ~41!

The terms included in the summation are deduced as follows:
First select two interactionsL2 andL1 and find the complete
set of cross terms recoupled from theirorderedsetL23L1

using the selection rules Eqs.~38! or ~39!. Then form the
symmetrized second order AH according to Eq.~41! for each
of these terms; this procedure automatically takes all cross
terms of the setL13L2 into account. The protocol is re-
peated for alldistinct symmetrized pairs (L23L1).

Equation~26! may now be cast into a symmetrized form

H̄
~
l 1m1l1m1

l 2m2l2m2!

~L23L1!
5v̄

~
l 1m1l1m1

l 2m2l2m2!

~L23L1!
@Tl2m2

L2 ,Tl1m1

L1 #, ~42!

with the symmetrized cross term interaction frequency given
by

v̄
~
l 1m1l1m1

l 2m2l2m2!

~L23L1!
5v̄

l 1m1l1m1

l 2m2l2m2

L23L1
2v̄

l 2m2l2m2

l 1m1l1m1

L13L2 . ~43!

By Eq. ~29! it may be expressed as

v̄
~
l 1m1l1m1

l 2m2l2m2!

~L23L1!
5t rk

~
l 1m1l1m1

l 2m2l2m2!
@Al 2m2

L2 #R@Al 1m1

L1 #R

3exp$2 i ~m21m1!~aRL
0 2v r t0

0!% ~44!

with the symmetrized dimensionlesssecond orderscaling
factor given by

k
~
l 1m1l1m1

l 2m2l2m2!
5k

l 1m1l1m1

l 2m2l2m2
2k

l 2m2l2m2

l 1m1l1m1
. ~45!

E. MQ phase cycles

In this section we discuss the AHT ofSMx sequences
with S5CNn

n or S5RNn
n . From the construction of aSMx

sequence follows another interaction frame symmetry, in ad-
dition to that given in Eq.~17!,

ṽ lmlm
L ~ tq1pT!5Ppṽ lmlm

L ~ tq!. ~46!

Herep is an integer between 0 andM21 and the following
substitutions are used:

P5exp$ i2pP/M %, ~47!

P52mx. ~48!

1. First order average Hamiltonian

The first order average Hamiltonian for anSMx se-
quence is constructed through Eq.~18!, where

v̄ lmlm
L 5TSM

21E
t0
0

t0
0
1TSMdt ṽ lmlm

L ~ t !. ~49!

From the periodic symmetries Eqs.~17! and~46! this may be
simplified to

v̄ lmlm
L 5SmSlmlmk lmlm@Alm

L #R exp$2 im~aRL
0 2v r t0

0!%

~50!

with Slmlm andk lmlm defined in Eqs.~21! and~23!, respec-
tively, and the sumSm stemming from the MQ phase cycle:

Sm5
1

M (
p50

M21

Pp5H 0 if PÞ1⇔PÞMZ,

1 if P51⇔P5MZ.
~51!

The product of sumsSmSlmlm gives rise to the selection rules
for the first order AH terms of anSMx sequence,35
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H̄ lmlm
L 5SmSlmlm50 ifH ~mn2mnÞNZ! OR ~mxÞMZ8! for ~CNn

n!Mx,

S mn2mnÞ
N

2
ZlD OR ~mxÞMZ8! for ~RNn

n!Mx,
~52!

whereZ andZ8 are arbitrary integers andZl is any integer
with the same parity asl. As discussed in Refs. 13 and 35
the first order selection rule for the AH of aSMx scheme is
related to that of CNn

n and RNn
n sequences@Eq. ~22!#, with

the additional requirementthat all second order terms are
suppressedif the productmx is not an integer multiple ofM.

2. Second order average Hamiltonian

The second order average Hamiltonian for anSMx se-
quence is given by Eq.~26!, with the time integration ex-
tending over the entire supercycle

v̄
l 1m1l1m1

l 2m2l2m2

L23L1
5~2iTSM!21E

t0
0

t0
0
1TSMdt8E

t0
0

t8
dt

3ṽ l 2m2l2m2

L2 ~ t8!ṽ l 1m1l1m1

L1 ~ t !. ~53!

In the presence of anSMx sequence, the interaction frame
symmetry ofṽ

l 2m2l2m2

L2 implies the following property of a

product of two such terms:

ṽ l 2m2l2m2

L2 ~ tq81p8T!ṽ l 1m1l1m1

L1 ~ tq1pT!

5P2
p8P1

pṽ l 2m2l2m2

L2 ~ tq8!ṽ l 1m1l1m1

L1 ~ tq! ~54!

with P15exp$2i2pm1x/M% and P25exp$2i2pm2x/M%

given from Eqs.~47! and ~48!. The termv̄
l 1m1l1m1

l 2m2l2m2

L23L1 may con-

sequently be expressed as

v̄
l 1m1l1m1

l 2m2l2m2

L23L1
5t rk

l 1m1l1m1

l 2m2l2m2

SM
@Al 2m2

L2 #R@Al 1m1

L1 #R

3exp$2 i ~m21m1!~aRL
0 2v r t0

0!%, ~55!

wherek
l 1m1l1m1

l 2m2l2m2

SM
is the dimensionless second order scaling fac-

tor of theSMx sequence. In analogy with Eq.~30! it may be
written as a sum of two components,

k
l 1m1l1m1

l 2m2l2m2

SM
5k

l 1m1l1m1

l 2m2l2m2

SMh
1k

l 1m1l1m1

l 2m2l2m2

SMn
. ~56!

The rectangular part is given by

k
l 1m1l1m1

l 2m2l2m2

SMh
5

Mn

2i
Sm2m1

h Sl 2m2l2m2
Sl 1m1l1m1

3k l 2m2l2m2
k l 1m1l1m1

, ~57!

where the sumsSl 2m2l2m2
and Sl 1m1l1m1

are defined by Eq.
~21! with k l 2m2l2m2

and k l 1m1l1m1
being the corresponding

first order scaling factors and the sumSm2m1

h corresponding to

Sm2m1

h 5
1

M2 (
p851

M21

P2
p8 (

p50

p821

P1
p . ~58!

It may be simplified to the closed analytical forms given in
Table II, obtained from the generic form given in the supple-
mentary material.50 The triangular part in Eq.~56! is given
by

k
l 1m1l1m1

l 2m2l2m2

SMn
5MSm2m1

n k
l 1m1l1m1

l 2m2l2m2

, ~59!

TABLE II. Expressions forSm2m1

h @Eq. ~58!# andSm2m1

n @Eq. ~60!# depending
on the MQ-category of the second order average Hamiltonian term for MQ-
phase cyclesSMx.

Sm2m1

h Sm2m1

n

MQ
selection rules

MQ
category

m1xÞMZ
AND

0 0 m2xÞMZ 1
AND

(m11m2)xÞMZ

i
exp$ipm1x/M%

2M sin$pm1x/M%
m1xÞMZ

AND

5
1

M
m2xÞMZ 2

AND

2i
exp$2ipm2x/M%

2M sin$pm2x/M%
(m11m2)x5MZ

m1x5MZ

AND

i
exp$ipm2x/M%

2M sin$pm2x/M% 0 m2xÞMZ 3a

AND
(m11m2)xÞMZ

m1xÞMZ

AND

2i
exp$ipm1x/M%

2M sin$pm1x/M%
0 m2x5MZ 3b

AND
(m11m2)xÞMZ

m1x5MZ

AND

M21

2M

1

M
m2x5MZ 4

AND

(m11m2)x5MZ
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wherek
l 1m1l1m1

l 2m2l2m2
is the second order scaling factor defined in

Eq. ~30! and the sumSm2m1

n defined by

Sm2m1

n 5
1

M2 (
p50

M21

P2
pP1

p . ~60!

Its simplified analytical forms are given in Table II.
Similarly to the previous treatment of the sumsS

l 1m1l1m1

l 2m2l2m2

h

andS
l 1m1l1m1

l 2m2l2m2

n
in the case of CNn

n or RNn
n sequences, five dif-

ferentMQ categoriesmust be distinguished when evaluating
Sm2m1

h andSm2m1

n for anSMx sequence. As these five catego-

ries couple together with the five categories provided by the
compound CNn

n or RNn
n schemes, altogether 25 different

cases~presented in the supplementary material50! have to be
distinguished when analyzing the second order average
Hamiltonian of anSMx sequence.

3. Second order selection rules for SMx sequences

From the definition of the scaling factors for the second
order average Hamiltonian terms in the presence of aSMx

sequence, the selection rules for the second order terms can
be expressed as

H̄
l 1m1l1m1

l 2m2l2m2

L23L1
50

if H ~Sm2m1

n 50 OR S
l 1m1l1m1

l 2m2l2m2

h
50!

AND
~Sm2m1

h 50 OR Sl 2m2l2m2
50 OR Sl 1m1l1m1

50!.

~61!

This condition may be expressed in terms of the spin and
spatial quantum numbers of the cross term and the symmetry
numbers of theSMx scheme,35

H̄
l 1m1l1m1

l 2m2l2m2

L23L1
50 if ~A AND B!. ~62!

For (RNn
n)Mx sequences, the logical expressionsA and B

~which may evaluate either to ‘‘true’’ or ‘‘false’’! are given
by

A51
m1n2m1nÞ

N

2
Zl1

AND

m2n2m2nÞ
N

2
Zl2

AND

~m21m1!n2~m21m1!nÞ
N

2
Zl21l1

2
OR ~m11m2!xÞMZ ~63!

and

B5S m1n2m1nÞ
N

2
Zl1

OR

m2n2m2nÞ
N

2
Zl2

D OR S m1xÞMZ
AND

m2xÞMZ
AND

~m11m2!xÞMZ

D .

~64!

The corresponding inequalities for (CNn
n)Mx schemes are

obtained by the substitution (N/2)Zl→NZ8. If Eq. ~62! is
not fulfilled, the second order average Hamiltonian term is
recoupled due to the combined C/R and MQ phase-cycle
symmetries.

Condition A is the direct second order analogue of the
first order selection rule Eq.~52!: the role of MQ phase cy-
cling is simply to impose the requirement that forx561,
the sum of spin components (m21m1) of the recoupled cross
term must be an integer multiple ofM. However, due to the
presence of termB, it is not necessarilytrue that all cross
terms recoupled by anSMx sequence satisfy (m11m2)x
5MZ. Equation~64! implies that a cross term isalso sym-
metry allowed if both its components, (l 2 ,m2 ,l2 ,m2) and
( l 1 ,m1 ,l1 ,m1), aresimultaneouslyrecoupled to first order,
andadditionally, at least one of them has a spin component
being an integer multiple ofM @or that the sum (m11m2)
fulfill this requirement#. However, for most symmetries
(N,n,n), contributions from Eq.~64! are rare.

F. The phase inversion supercycle

In this work, our primary concern is the combination of
MQ phase cyclesSMx @Fig. 1~d!# and phase inversion su-
percyclesSS8 @Fig. 1~e!#, as they may provide 3Q selective
recoupling. However, as a complete theoretical account of
(SS8)Mx schemes is out of the scope of this paper, we will
only briefly discuss the most import results.

A phase inversion supercycle modifies the first order AH
terms@Eq. ~18!# recoupled by a sequenceS in the following
way:13,23

H̄ lmlm
L 5 1

2~v̄ lmlm
L 1~21!m~v̄ lmlm

L !* !Tlm
L . ~65!

The frequencyv̄ lmlm
L is given by Eq.~20!; upon the super-

cycling procedureS→SS8, it is replaced by its real or imagi-
nary part, depending on the value ofm. Generally, it follows
that the resulting first order scaling factor for the recoupled
interaction of the supercycleSS8 is smaller than that of the
sequenceS, and that the first order AH is notg-encoded.13,23

A similar effect occurs in the second order AH: under the
assumption that both components of a cross term
$( l 2 ,m2 ,l2 ,m2),(l 1 ,m1 ,l1 ,m1)% arenot simultaneously re-
coupled to first order,i.e., if the cross term falls into one of
the R/C-categories 2, 3a, and 3b, the second order AH terms
in Eq. ~26! of the supercycleSS8 are given by51,52

H̄
l 1m1l1m1

l 2m2l2m2

L23L1
5

1

2
~v̄

l 1m1l1m1

l 2m2l2m2

L23L1
2~21!m21m1~v̄

l 1m1l1m1

l 2m2l2m2

L23L1
!* !

3@Tl2m2

L2 ,Tl1m1

L1 #, ~66!
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where v̄
l 1m1l1m1

l 2m2l2m2

L23L1 is given by Eq.~29!. Hence, upon phase

inversion supercycling, the frequencyv̄
l 1m1l1m1

l 2m2l2m2

L23L1 is replaced by

its real or imaginary part depending on the value ofm2

1m1 . It may be concluded from Eq.~66! that H̄
l 1m1l1m1

l 2m2l2m2

L23L1 van-

ishes over the sequenceSS8 if the following three conditions
are simultaneously obeyed:~i! the term belongs to the R/C-
category 2,~ii ! l 25 l 1 and l25l1 , and ~iii ! m21m150.
Therefore, all ZQ terms of category 2 vanish upon phase
inversion supercycling. This property is exploited below to
convert 3Q/ZQ-selective sequences into 3Q-selective ones.
The two (SS8)Mx schemes generated from Eqs.~4! and ~5!
provide identical second order average Hamiltonians under
these conditions.

IV. FEATURES OF 3Q RECOUPLING

A. Average Hamiltonian

Here we assume a system ofNS coupled spins-1/2
( i , j ,k,...) andapply the previously introduced second order
AHT to the case of 3Q recoupling. A 3Q term may appear in
the second order average Hamiltonian as a cross term be-
tween a double-quantum operator associated with one dipo-
lar coupling and another single-quantum operator of adiffer-
ent coupling, according to the commutators

@T262
i j ,T261

ik #52@T261
i j ,T262

ik #

57
1

&
T363

i jk 5
1

4
Si

6Sj
6Sk

6 . ~67!

The second order average Hamiltonian of a sequenceS then
comprises terms of the form $L23L1 ;( l 2 ,m2 ,
l2 ,m2),(l 1 ,m1 ,l1 ,m1)%, with

$ i j 3 ik;~2,m2,2,62!,~2,m1,2,61!%,

$ i j 3 ik;~2,m1,2,61!,~2,m2,2,62!%.

In this section, we explicitly indicate the order of couplings
within each cross term. Assume the sequence recouples in
total N3Q such terms foreach ordered set of dipolar pairs
i j 3 ik. The numberN3Q is always a multiple of 4~cf. Table
III !: from the selection rules follow that for each13Q term
$ i j 3 ik;(2,m2,2,2),(2,m1,2,1)% ~involving the commutator
@T22

i j ,T21
ik #), simultaneous recoupling occurs of the13Q term

$ i j 3 ik;(2,m1,2,1),(2,m2,2,2)% ~involving @T21
i j ,T22

ik #). Also,
the two corresponding23Q terms $ i j 3 ik;(2,2m2,2,
22),(2,2m1,2,21)% and $ i j 3 ik;(2,2m1,2,21),(2,
2m2,2,22)% are recoupled. An identical set ofN3Q cross
terms is recoupled for the pairik3 i j .

Onwards, we focus on thesymmetrizedcross terms
$( i j 3 ik);(2,m2,2,62),(2,m1,2,61)% that includesboth i j
3 ik andik3 i j contributions. Hence, there areN3Q symme-
trized terms to consider for each symmetrized pair of cou-
plings. For a system ofNS spins, there areNS(NS21)/2
distinct dipolar couplings. There areNS(NS21)(NS22)/2
symmetrized pairsof couplings (i j 3 ik) that may produce
63Q operators, and a total ofN3QNS(NS21)(NS22)/2 dis-

tinct v̄
(
l 1m1l1m1

l 2m2l2m2)

(L23L1)
contributions to the second order average

Hamiltonian. For example, in a three-spin system, there are
3N3Q distinct symmetrized terms.

In the following, we focus on asubsetof N (13)13Q
terms recoupled by a given pulse sequenceS and originating
from one pair ( i j 3 ik). This set is denotedT (13)

5$T1 ,T2 ,...,TN(13)%, where each elementTr represents the
net contribution from the cross term conforming to$( i j
3 ik);(2,m2,2,2),(2,m1,2,1)% and that obtained after ex-

TABLE III. The number of recoupled first and second order dipolar AH terms for various pulse sequencesS. N represent term countsper couplingin the case

of H̄ (1), whereas those forH̄ (2) are forone pairof dipolar couplings. Note that R183
7 is inherently 3Q/ZQ selective, i.e.,N1Q5N2Q50 up to second order,

whereas the other schemes are not. However, their corresponding 3Q phase cyclesSMx are 3Q/ZQ selective. The sequences suppress all other interactions to
first order, exceptJ couplings. In the case of C72

21, isotropic chemical shifts are also recoupled.

S Class NZQ@H̄ (1)# N1Q@H̄ (1)# N2Q@H̄ (1)# NZQ@H̄ (2)# N1Q@H̄ (2)# N2Q@H̄ (2)# N3Q@H̄ (2)# N(13) T(13) and C/R categories

R143
2 I 0 0 0 20 8 0 4 1 2:$~2, 1, 2, 2!, ~2, 1, 2, 1!%

R183
7 I 0 0 0 20 0 0 8 2 2:$~2, 21, 2, 2!, ~2, 2, 2, 1!%

2: $~2, 2, 2, 2!, ~2, 21, 2, 1!%

C72
21 II 0 0 2 32 40 28 20 5 3b:$~2, 21, 2, 2!, ~2, 22, 2, 1!%

3b: $~2, 21, 2, 2!, ~2, 21, 2, 1!%
3b: $~2, 21, 2, 2!, ~2, 1, 2, 1!%
3b: $~2, 21, 2, 2!, ~2, 2, 2, 1!%
2: $~2, 1, 2, 2!, ~2, 1, 2, 1!%

R81
21 III 0 2 2 44 56 34 32 8 3b:$~2, 22, 2, 2!, ~2, 22, 2, 1!%

3b: $~2, 22, 2, 2!, ~2, 1, 2, 1!%
3b: $~2, 22, 2, 2!, ~2, 2, 2, 1!%
2: $~2, 21, 2, 2!, ~2, 22, 2, 1!%
4: $~2, 22, 2, 2!, ~2, 21, 2, 1!%
3a: $~2, 21, 2, 2!, ~2, 21, 2, 1!%
3a: $~2, 1, 2, 2!, ~2, 21, 2, 1!%
3a: $~2, 2, 2, 2!, ~2, 21, 2, 1!%
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changing the order of the sets of quantum numbers:$( i j
3 ik);(2,m1,2,1),(2,m2,2,2)%. Expressed in terms of sym-
metrized Hamiltonians, the contribution fromTr amounts to

H̄Tr

~ i j 3 ik !5H̄
~
2m121

2m222
!

~ i j 3 ik !
1H̄

~
2m222

2m121
!

~ i j 3 ik !
~68!

with each term given by a sum according to Eq.~41!. The
various elementsTr only differ in the combinations of
(m2 ,m1), and each of them comprise four parts: two contri-
butions from the symmetrization procedure, and two origi-
nating from only exchanging the order of the sets of quantum
numbers while the order of interactionsi j 3 ik is kept,

H $ i j 3 ik;~2,m2,2,2!,~2,m1,2,1!%,$ ik3 i j ;~2,m2,2,2!,~2,m1,2,1!%,
$ i j 3 ik;~2,m1,2,1!,~2,m2,2,2!%,$ ik3 i j ;~2,m1,2,1!,~2,m2,2,2!% J .

The total second order13Q part of the average Hamiltonian
is the sum over all terms withinT(13) and all symmetrized
pairs of dipolar couplings:

H̄13Q
~2! 5 (

i j ,ik
(
r 51

N~13!

H̄Tr

~ i j 3 ik ! . ~69!

By combining Eq.~68! with the commutator relationships
Eq. ~67! we get

H̄Tr

~ i j 3 ik !5
1

4
v̄Tr

~ i j 3 ik !Si
1Sj

1Sk
1

5
1

4
$v̄

~
2m121

2m222
!

~ i j 3 ik !
2v̄

~
2m222

2m121
!

~ i j 3 ik !
%Si

1Sj
1Sk

1 . ~70!

In the case of aS361 phase cycle, each symmetrized term

v̄
(
2m121

2m222
)

( i j 3 ik)
is calculated from Eq.~43!, whereas for nested 3Q

phase-inversion supercycles (SS8)361 the calculation pro-
ceeds through Eq.~66!. Expressions for the frequencies
v̄Tr

( i j 3 ik) are given in the supplementary material.50 The total

3Q AH may be calculated from

H̄3Q
~2!5H̄13Q

~2! 1H̄23Q
~2! ~71!

with H̄23Q
(2) 5$H̄13Q

(2) %†. From this follows that it is unneces-
sary to explicitly consider the set of23Q terms~i.e.,T (23)).
Note, however, that for 3Q/ZQ-selective sequences, it is nec-
essary to also include the second order ZQ average Hamil-
tonian (H̄ZQ

(2)), constructed analogously toH̄3Q
(2) , and consider

the total Hamiltonian

H̄ ~2!5H̄3Q
~2!1H̄ZQ

~2! . ~72!

B. 3QC excitation

A 3Q-selective Hamiltonian of the form Eq.~71! effects
3QC excitation in multispin systems by conversion of longi-
tudinal equilibrium magnetization (Sz5Siz1Sjz¯) directly
into 3QC. The excitation dynamics is particularly simple in a
three-spin system as it is confined to a subspace spanned by
the two statesuaaa& andubbb&, and may be described within
the fictitious spin-1/2 formalism.53,54 We omit the details, as
Ref. 6 outlines the general idea of exciting (6M )QC by the
action of an Hamiltonian comprising only (6M )Q operators
on equilibrium magnetization fromM spins, and detailed

treatments of 2QC excitation in a spin pair may be found in
Refs. 55 and 56. The 3QF efficiency is defined as the ampli-
tude obtained after the coherence transfer processSz

→3QC→Sz , and is formally given by

E3Q5Tr$SzU rec~ P̂3QUexcSzUexc
† !U rec

† %/Tr$Sz
2%, ~73!

whereP̂3Q is a 3QC projection superoperator.Uexc andU rec

represent the propagators used for 3QC excitation and recon-
version, respectively. They are related throughU rec

5Rz(F rec)UexcRz(F rec)
†, with F rec being the phase shift ap-

plied to the reconversion pulses@see Fig. 1~g!#.
Assuming a 3Q Hamiltonian@Eq. ~71!# of threecoupled

spins, the 3QF efficiency may be calculated analytically for a
single crystallite orientationVMR according to

E3Q~texc!

52
3

4
sin2H 1

2
U (

i j ,ik
(
r 51

N~13!

v̄Tr

~ i j 3 ik ! UtexcJ cos$3F rec%.

~74!

Hence, the optimal efficiency of 3/4 is obtained57 whenF rec

equals any integer multiple ofp/3 ~including zero!. The
maximum theoretical 3QF efficiency in an isotropic powder
amounts to'55%. However, not all 3Q-selective pulse se-
quences attain this limit due to other orientational aspects of
the 3Q Hamiltonian; a detailed discussion is out of the scope
of the present paper and will be given elsewhere.

C. Classification of 3Q recoupling sequences

Almost all CNn
n and RNn

n sequences give 3Q-recoupling,
implying that the corresponding (RNn

n)31 and (CNn
n)31 MQ

phase-cycles effect 3Q/ZQ-selective recoupling. However,
additional criteria must be used in the search for practically
feasible 3Q recoupling sequences. Here we examine useful
classifications of symmetry-based pulse schemes that assists
this search and helps predicting the properties of second or-
der 3Q recoupling sequences. It is important to note that the
task of MQ phase cycling is to suppress the largest possible
number of undesired MQ order terms in the AH generated by
the sequenceS, while the scaling factors of its 3Q terms
remain, in general, unchanged. This implies that the proper-
ties of the resulting MQ phase cycle may be assessed from
the properties of the compound sequenceS.
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We have classified the second ordercross termsin five
categories depending on the subset of inequalities in Eqs.
~38! and~39! that are obeyed by their sets of quantum num-
bers. Here we discuss anadditional classificationof the 3Q
recoupling sequences35 and examine the relationship be-
tween the two classifications. The desired 3Q terms,
$(2,m2,2,62),(2,m1,2,61)% arise in second order AHT as
cross terms between a 2Q term and a 1Q term, each of which
may be recoupled OR decoupled to first order. We therefore
dub S as a ‘‘class I,’’ ‘‘class II’’ or ‘‘class III’’ sequence,
depending on whetherneither, one, or bothterms conform-
ing to (2,m2,2,62) and (2,m1,2,61) are recoupled to first
order, respectively.

In the case of class I sequences, we demand that all
homonuclear dipolar terms~including ZQ terms! are sup-
pressed to first order; they correspond to~first order! homo-
nucleardecouplingsequences. Class I sequences have the
most restrictive selection rules, and therefore recouple the
smallest number of second order 3Q and ZQ terms,all of
which belong to R/C-category 2. There is an important sub-
set of class I sequences that provide 3Q/ZQ-selective recou-
pling by thesequenceS itself, i.e., all 1Q and 2Q terms are
suppressed up to second order AHT. This applies, for ex-
ample, to C151

5, C152
5, C93

4, and all R183
n sequences. Class II

sequences provideeither1Q or 2Q dipolar recoupling to first
order AHT. A recoupled 3Q cross term may belong to one of
the R/C-categories 2, 3a or 3b, but not to category 4. Note
that there is no restriction on the ZQ AH, as terms of the
form $( l ,m,l,m),(l ,2m,l,2m)% are in general recoupled,
and they may conform to any R/C-categories 2–4. Class III
sequences recouple both 1Qand 2Q dipolar terms to first
order. In the case of (RNn

n)361 sequences, the recoupled
terms obey the full selection rule of Eq.~62!, and each ele-
ment in both sets of recoupled 3Q and ZQ terms may con-
form to any of the R/C-categories 2–4.

Examples of some pulse sequences are listed in Table
III. The total number of 3Q terms recoupled by a givenS361

sequence increases as the selection rules relax. However,
class I sequences are advantageous because they most effi-
ciently suppress 1Q and 2Q terms~which interfere with the
3Q recoupling!. As no dipolar terms are recoupled to first
order by class I 3Q-phase cyclesS361, they preclude recou-
pling of second order ZQ terms of R/C-categories 3a, 3b, and
4: from Sec. III follows that 3Q-selective recoupling is
achieved by all(SS8)361 schemes ifS belongs to classI.

V. DESIGN PRINCIPLES OF 3Q RECOUPLING
SEQUENCES

A. Numerical simulation strategies

To assess the performance of 3Q recoupling sequences,
we performed a variety of numerical simulations. These refer
to calculated 3QF efficiency curves fromS31 and (SS8)31

pulse schemes assuming a three-spin system in a powder,
with dipolar couplings representative for13C3–alanine and
chemical shift interactions included when noted. All simula-
tions represent powder averages from 538 crystallite orienta-
tions selected by the ZCW scheme58–60and were carried out
as follows:

Referenceor numerically exactsimulations refer to first
estimating a numerically exact propagator over the entire
pulse sequence, followed by propagation of the density op-
erator. Finally, a 3QF efficiency function, sampled in steps of
T, was calculated from Eq.~73!. Additionally, the AH gov-
erning the numerically exact propagator was determined.
Then either its 3Q operators,or the sum of 3Q and ZQ
operators were extracted~denoted3Q-projectedor 3Q/ZQ-
projected exact AH, respectively! and used in subsequent
calculations according to Eq.~73!. This AHT approach in-
cludes all 3Q~or, alternatively all 3Q1ZQ) contributions to
the average Hamiltonian to infinite order. Also, we per-
formed analytical second order AH calculations based on the
Hamiltonian in Eq.~72!, assuming perfect behavior of the
S31 and (SS8)31 MQ phase cycles, i.e., that only 3Q and
ZQ dipolar terms contribute in the former case, and only 3Q
terms in the latter. All other dipolar-deriving MQ contribu-
tions, as well as all other interactions, were ignored as they
are symmetry forbidden. The validity of this approximation
was confirmed by comparison with numerically exact refer-
ence calculations.

Comparing ‘‘exact’’ simulations with 3Q/ZQ-projected
AH calculations shows how accurate AHT models the exci-
tation dynamics, while comparing the 3Q/ZQ-projected AH
and second order analytical simulations indicates the validity
of truncating the Magnus expansion at second order, i.e., of
using the approximationH̄'H̄3Q

(2)1H̄ZQ
(2) .

FIG. 3. Numerical simulations@based on Eq.~71!# of 13C 3QF efficiency
curves from a three-spin system in a powder spinning atv r /2p
510.000 kHz using (R143

2)31 ~left column! and (R183
7)31 ~right column!.

The calculations employed13C–13C dipolar couplings of13C3– alanine but
no chemical shift interactions.~a! and ~b! curves obtained from different
elementsR; two windowless elementsR5p0 andR5(p/2)0(3p/2)p and
a windowed one,Rw(b555°) with pulse fractionf 50.10. Note that the
latter provides higher scaling factors and thereby faster 3QC excitation.~c!
and ~d!, 3QF efficiency curves fromRw(b) with f 50.10 for different
anglesb. In agreement with Eq.~77!, the largest scaling factor is obtained
for b'55°. ~e! and~f!, same as in~c! and~d!, but for constantb555° and
variable pulse fractionf.
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B. 3Q scaling factors

Since the rate of 3QC excitation depends on the frequen-
cies v̄Tr

( i j 3 ik) , in turn proportional to the scaling factors

k
2m121

2m222,it is desirable to find combinations of pulse sequence

symmetries and elementsE0 giving the largest possible scal-
ing factors. The main weakness with the second order recou-
pling approach is that the cross terms are in general small. In
favorable cases, the dimensionless second order scaling fac-
tor k

2m121

2m222;0.01, typically an order of magnitude smaller

than its first order counterpartsk2m222 and k2m121. Further,
in contrast to the first order recoupling case, thesecond order
dipolar frequenciesare inversely proportional to the spinning
frequency@Eq. ~29!#.

Traditionally in first order recoupling applications, the
elementsR5p0 and R5(p/2)0(3p/2)p are employed for
RNn

n sequences12,13,19,20,22,27,29 and C5(2p)0 , C
5(2p)0(2p)p andC5(p/2)0(2p)p(3p/2)0 in the case of
CNn

n schemes.13,15,16,18,29,46However, simulations show that
these elements are generally nonoptimal for second order
recoupling applications, as demonstrated by Figs. 3~a!–3~b!.
Instead, we have employedwindowedC and R elements,
providing larger first order dipolar scaling factors than the
windowless options,13,31,35a property carried over and accen-
tuated for the second order scaling factors. Two classes of
windowed elements, internally compensated to isotropic
chemical-shift interactions, are13,31,35

Rw~b!5$b02tw2p02tw2bp%, ~75!

Cw~b!5$b02tw2p02tw2~p2b!0%. ~76!

Here tw denotes a ‘‘window’’ interval, during which the rf
fields are turned off, and timed such that the entire element
extends overtE5nt r /N.

Equations~31! and ~33! show that 3Q scaling factors
have parts of the formk2m222k2m121; therefore, optimal sec-
ond order scaling factorsk

2m121

2m222 result from recoupling se-

quences that simultaneously effect large 2Qand 1Q first or-
der scaling factors.2Q and 1Q scaling factors depend on the
pulse flip angleb of the windowed element ask2m222

;sinb and k2m121;sin 2b, having optima atb5p/2 and
b5p/4, respectively.31 This predicts that their optimum
product,

k
2m121

2m222'k2m222k2m121;sinb sin 2b ~77!

is obtained forb5um'54.7°. These arguments are only ap-
proximate, ask

2m121

2m222 depends also onk
2m121

2m222
D

@Eq. ~30!#, which

is not directly related to the first order scaling factors. Nev-
ertheless, the optimal angleb is in practice found within the
range 50°&b&60° as confirmed by the simulations shown
in Figs. 3~c!–3~d!. The scaling factors of windowed elements
E0 also depend on the relative durations between the pulses
and windows overtE ,31 reflected by thepulse fraction f,

f 5tE
21 (

p51

pulses in E0

tp . ~78!

As shown by the simulations in Figs. 3~e! and 3~f!, the scal-
ing factor is maximized whenf is minimized.

C. 3Q phase cycles versus 3Q phase
inversion supercycles

From an ‘‘ideal’’ 3Q-recoupling sequence, we demand
that ~i! it is 3Q selective, i.e., effects an average Hamiltonian
according to Eq.~71!, with suppression of interfering dipolar
terms to first and second order AHT;~ii ! it provides the high-
est possible 3Q scaling factors;~iii ! the recoupling is effi-
cient over a large range of isotropic and anisotropic chemical
shifts;~iv! it is robust to rf imperfections; and~v! operational
over a wide range of spinning frequencies. We performed an
extensive numerical search over potentialC andR elements
and (N,n,n) symmetry numbers. The sequence found that
best fulfill criteria ~i!–~v! above is R183

7, a 3Q/ZQ-selective
class I sequence. It is further stabilized by the incorporation
of MQ phase cycling and phase inversion supercycles. We
therefore focus on evaluating (R183

7)31 and (R183
7R183

27)31

by numerical simulations.

FIG. 4. Comparison of simulated13C 3QF curves obtained from the MQ-
phase cycle (R183

7)31 ~a! and the corresponding MQ-phase inversion super-
cycle (R183

7R183
27)31 ~b!. The elementRw(50°) was employed withf

50.30 and other parameters as in Fig. 3. The solid lines correspond to
numerically exact simulations and the others to excitation dynamics from
various approximative average Hamiltonians~AH!; the curves labeled

H̄ (2)@3Q# were obtained from Eq.~71!, including all recoupled 3Q terms

listed in Table III, whereasH̄ (2)@3Q1ZQ# resulted after also including the

recoupled ZQ terms. Curves labeledH̄@¯# implies calculations starting by
numerically determining the AH~accurate to infinite order of the Magnus
expansion!, separating its contributions into various MQ operators, and only

retaining the 3Q or 3Q1ZQ parts in the casesH̄@3Q# and H̄@3Q1ZQ#,
respectively.
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1. Effects of zero-quantum terms

S31 schemes are advantageous over (SS8)31 sequences
in that they provide larger dipolar scaling factors and may
effectg-encoded 3Q recoupling by careful choice of symme-
try numbers, as will be discussed elsewhere. Their most pro-
nounced disadvantage is the unavoidable recoupling of ZQ
terms that generally perturb the 3QC excitation dynamics
significantly, resulting in 3QF efficiencies between 20–40 %
in contrast to the theoretical 3QF efficiency of'55%.

Figure 4 compares various analytical and numerical
strategies to approximate the Hamiltonian governing the
3QC excitation in the case of (R183

7)31 and
(R183

7R183
27)31. Only dipolar couplings were included in

the simulations;J couplings do not affect the 3QC dynamics
in three-spin systems and the effects of chemical shift inter-
actions will be considered in the next section. When only
including the 3Q part of the second order average dipolar
Hamiltonian, '55% 3QF efficiency is obtained from
(R183

7)31 @Fig. 4~a!# in excellent agreement with the results
from the 3Q-projected numerically determined AH. How-
ever, (R183

7)31 also recouples a set of ZQ terms~see Table
III !, in practice reducing the 3QF efficiency to'30% @Fig.
4~a!#: again there is excellent agreement with the results of

the numerically calculated 3Q/ZQ-projected AH. Further, the
latter simulation is indistinguishable from the numerically
exact reference calculation. These results underline the ex-
cellent capabilities of the second order analytical AHT to
account for the 3QC dynamics.

The theory predicts thatH̄ZQ
(2) may be removed by em-

ploying phase inversion supercycling: this is confirmed by
the numerical simulations of (R183

7R183
27)31. Figure 4~b!

shows that the analytical calculations based onH̄3Q
(2) , the

3Q/ZQ-projected AH simulations, and the numerically exact
reference calculations all agree very well. Also, identical re-
sults ~not shown! were obtained fromH̄3Q

(2)1H̄ZQ
(2) and the

3Q-projected numerically determined AH. These simulations
show that the (R183

7R183
27)31 scheme suppresses all ZQ

terms, but at a price of lowering the theoretical 3QF effi-
ciency from '55% to about 40%. Nevertheless, the 3QF
efficiency offered by the (R183

7R183
27)31 scheme is in prac-

tice higher than for (R183
7)31 due to the latter’s undesirable

ZQ contributions.

2. Effects of chemical shifts and Rf errors

In realistic scenarios, the dipolar recoupling should be
reasonably robust to interference from chemical shift inter-
actions as well as experimental imperfections, such as insta-
bilities in the amplitudes and phases of the rf field during the
application of the pulse sequences. Although the scheme
(R183

7)31 is the best option found so far for 3Q recoupling,
Fig. 5~a! shows that its 3QC dynamics is significantly per-
turbed by chemical shifts over longer time scales. The results
correspond to powder averaged13C 3QF efficiencies pre-
dicted from numerically exact simulations for three cases:
one solely dipolar coupling based~circles! and two including
both isotropic and anisotropic chemical shifts, either at a
magnetic field of 4.7 T~squares! or 9.4 T~triangles!. Despite
that chemical shifts are symmetry-forbidden and further lo-
cally suppressed over each R element,31 the presence of ZQ
terms of the AH magnifies the effects of residual shift terms
and may lead to severe susceptibilities of the recoupling to
chemical shift interactions.

These problems are partially circumvented by employing
phase-inversion supercycling, as shown by the simulated
3QF efficiency curve of the corresponding sequence
(R183

7R183
27)31 @Fig. 5~b!#. Nevertheless, the simulations of

Fig. 5 indicate that an analysis of 3QF curves must consider
chemical shift interactions explicitly to properly account for
the observed dynamics, especially if geometric information
about the spin system is to be extracted. These problems
arise from the necessity to employ long excitation intervals
texc, requiring extremely high compensation to chemical
shifts. This is also encountered in the determination of long-
range internuclear distances by current state-of-the-art 2Q
recoupling sequences.18,20,27–29,46

Figures 5~c! and 5~d! show the dependence of the rf
carrier position~related to the robustness of a pulse sequence
to a spread in isotropic chemical shifts among the spins! for
(R183

7)31 and (R183
7R183

27)31 at texc fixed to the 3QF maxi-
mum for each sequence. In the case of (R183

7)31 and assum-
ing equal isotropic shifts of the spins, fluctuations of the 3QF

FIG. 5. Numerically exact simulations atv r /2p56.000 kHz of the response
to chemical shift interactions~a!–~d! and deviations from the nominal value
of the rf amplitude~e!, ~f! for (R183

7)31 ~left column! and (R183
7R183

27)31

~right column!. Calculations included either only13C–13C dipolar couplings
representative of alanine~circles! or additionally chemical shifts at 4.7 T
~squares! and 9.4 T~triangles!. Rw(50°) andRw(60°) with f 50.30 were
used for (R183

7)31 and (R183
7R183

27)31, respectively, givingvnut,nom
C /2p

593 kHz and 100 kHz.~a!, ~b! 3QF efficiencies as function of the excitation
interval texc. In ~c!–~f!, the 3QC excitation interval was fixed attexc

53.00 ms~c!,~e! andtexc55.00 ms~d!,~f!. ~c!,~d!, 3QF efficiencies as func-
tion of the resonance offset, defined as zero when the rf carrier frequency is
set exactly in between the carboxyl and methyl13C sites.~e!,~f!, 3QF effi-
ciencies as function of the ratio between the actual13C nutation frequency
used and the nominal valuevnut,nom

C .
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efficiency curve are observed as the rf carrier is moved away
from resonance, but a significantly enhanced robustness to
frequency offsets results from using the (R183

7R183
27)31 se-

quence@Fig. 5~d!#. The chemical shift compensation may be
improved for these schemes by increasing the spinning fre-
quency or decreasing the pulse fraction by using more in-
tense rf pulses.

Now considering effects from errors in the rf amplitudes,
Figs. 5~e! and 5~f! indicate a strikingly enhanced robustness
upon phase inversion supercycling to rf amplitude errors.
The (R183

7)31 simulations display a very high susceptibility
especially at the higher field of 9.4 T, whereas the 3QC dy-
namics obtained from the scheme (R183

7R183
27)31 is essen-

tially unperturbed over a range of rf amplitudes within
610% of the nominal value. In the case of (R183

7)31, the
high sensitivity to the rf amplitude setting is likely to result
from cross terms between chemical shifts and rf amplitude
errors that are removed by the phase inversion cycle.20,23,28

VI. EXPERIMENTAL DEMONSTRATIONS

A. Samples and experimental conditions

3QF experiments incorporating (R183
7)31 and

(R183
7R183

27)31 were conducted at 4.7 T and 9.4 T on
Varian/Chemagnetics Infinity spectrometers. The experi-
ments at 4.7 T were carried out on powders of 99%
@U–13C, 15N# labeled L-alanine and L-tyrosine, using 4 mm
rotors with'15 mg of samples restricted to the center 1/3 of
the rotor volume to reduce rf inhomogeneity. The alanine
sample was additionally isotopically2H labeled at the Ca

~'90%! and Cb ~'25%! positions, and is henceforth re-
ferred to as ‘‘dAla.’’ The experiments on dAla at 9.4 T were
carried out with a 3.2 mm probehead.

The 3QF efficiencies were obtained by dividing the in-
tegrated spectral intensities resulting from the scheme in Fig.
1~f!, with that of a conventional CPMAS experiment. All

curves were sampled at completed R183
7 units. The proton

nutation frequenciesvnut
H /2p employed during cross polar-

ization and signal acquisition were typically'50 kHz and
'90 kHz, respectively. TPPM decoupling61 was used during
the signal acquisition, whereas either conventional high
power CW or amplitude-modulated decoupling~described in
the supplementary material50! was applied throughout the
13C recoupling sequences. Typically,vnut

H /2p around'115
kHz and '215 kHz was used for the 4 mm and 3.2 mm
probeheads, respectively. The numerically exact simulations
employed spin interaction parameters of alanine listed in
Ref. 62 and pulse parameters representative for the experi-
mental values.

B. 3QF experiments

Figure 6 shows the 3QF efficiencies obtained from nu-
merically exact simulations~a! and experiments~b! on dAla
using (R183

7)31 at spinning frequencies of 5.000 kHz~tri-
angles! and 7.600 kHz~circles!; at the higher spinning speed
results are also included from the supercycle
(R183

7R183
27)31. The simulation at the lower spinning fre-

quency predicts an optimum 3QF efficiency of 32.6% at
texc52.4 ms and experimentally we obtained 15.4%. As the
spinning frequency is increased to 7.600 kHz, both the simu-
lations and experiments indicate a shift to a slightly longer
optimal excitation interval, expected from AHT as the sec-
ond order dipolar frequencies are inversely proportional to
the spinning frequency. However, a drop in the simulated
3QF efficiency from'33% to 20% also occur, which may be
traced to the corresponding increase of the pulse fraction
from f 50.23 to f 50.34 upon the increase inv r : as the
scaling factors of the 3Q and ZQ average Hamiltonian terms
are dependent on the pulse fraction, their mutual interfer-
ences also change. Additionally, the (R183

7)31 sequence does
not exhibit enough chemical shift compensation to be unper-
turbed when the pulse fraction increases. As expected, the
supercycle (R183

7R183
27)31 effects a slower 3QC buildup

than the (R183
7)31 scheme.

Generally, 3QF losses can be attributed to two main
sources: rf inhomogeneity and interferences from1H–13C

FIG. 6. ~a! Numerically simulated and~b! experimentally acquired13C 3QF
efficiency curves from a powder of dAla using (R183

7)31 and
(R183

7R183
27)31 at 4.7 T. Curves with circles are results atv r /2p

57.600 kHz from (R183
7)31 @with Rw(57°) and f 50.34] whereas open

squares represent (R183
7R183

27)31 @Rw(53°), f 50.33]. The triangles are
results from (R183

7)31 @Rw(62°), f 50.23] atv r /2p55.000 kHz. All spin
interactions were included in the simulations. Note the different vertical
scales employed in~a! and ~b!.

FIG. 7. Numerically simulated and experimentally acquired results of dAla
at 9.4 T andv r /2p56.000 kHz, incorporating either the first order 2Q
recoupling sequence POST-C79 or the second order 3Q recoupling scheme
(R183

7)31 in 3QF experiments. POST-C7 converts 1QC into 3QC with a
theoretical 3QF efficiency of'6.5% ~Ref. 42! ~gray line!. Experimentally,
4.5% was obtained~circles!. Considerably higher 3QF efficiencies were
provided by applying (R183

7)31 directly to longitudinal magnetization; 34%
and 13.5% were obtained numerically~squares! and experimentally~tri-
angles!, respectively.
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couplings.15,18,46 Nevertheless, besides from rather signifi-
cant experimental 3QF losses, the qualitative features of the
experimental curves match well those of the simulations, es-
pecially when considering the comparatively long excitation
intervals involved. The main qualitative discrepancy is in-
deed occurring at larger values oftexc, most likely due to
interferences from rf inhomogeneity. We also carried out
3QF experiments on a full rotor of dAla and only obtained
11% 3QF efficiency atv r /2p55.000 kHz, amounting to

about 30% loss compared to the experiment on the restricted
sample volume.

Figure 7 depicts the corresponding experiments and
simulations of (R183

7)31 at B059.4 T and v r /2p
56.000 kHz. As this probehead allowed using higher13C
nutation frequencies, the pulse fraction employed at the
higher spinning frequency was equal to that employed at
v r /2p55.000 kHz and 4.7 T. A similar 3QF efficiency of
13.5% was observed, indicating that no significant distur-
bances occurred from the increased chemical shift interac-
tions at 9.4 T. Figure 7 also shows the results of a previously
introduced 3QC excitation technique42 relying on ~first or-
der! 2Q recoupling by POST-C7.9 Comparing its experimen-
tal 3QF efficiency of 4.5% with that obtained by (R183

7)31

underlines the superior capabilities of 3Q recoupling in de-
livering efficient 3QC excitation in rotating solids; despite
losses, the experimental results of 13.5% offered by
(R183

7)31 is twice that theoretically attainable by a 2Q re-
coupling sequence.

The results of Fig. 8 demonstrate that (R183
7)31 may be

successfully applied also to larger multiple-spin systems, in

FIG. 8. ~a! Molecular structure of L-tyrosine.~b!,~c! Experimental13C spec-
tra from a powder of@U–13C, 15N# – L-tyrosine at 4.7 T andv r /2p
57.300 kHz. ~b! The result of a cross-polarization experiment, employing
1.5 ms contact time, 96 signal transients, 10 s recycle delay and 101 kHz
TPPM decoupling~Ref. 61! during signal acquisition. The asterisks indicate
spinning sidebands.~c! 3QF experiment, acquired under identical conditions
as in ~b! but also including a 3QF stage using (R183

n)31 with Rw(51°); f
50.31; n57.005; vnut

C /2p5110 kHz; texc5t rec51.64 ms; vnut
H /2p

5110 kHz and 117 kHz decoupling during13C pulses and windows, respec-
tively, with 1H rf phases given in the supplementary material~Ref. 50!. The
overall 3QF efficiency was 8.2%, and the percentage obtained from each13C
site is given on top of each peak. The spectrum in~c! is displayed at 4 times
magnification relative to that in~b!.

FIG. 9. Pulse scheme used for 3Q–1Q homonuclear correlation spectros-
copy incorporating (R183

7)31 for 3QC excitation and reconversion. During
t1 , 3QC evolve under chemical shift interactions, prior to their conversion
into 1QC and the subsequent signal acquisition duringt2 . After 2D Fourier
transformation a spectrum is obtained that correlates the 3QC frequencies
~alongv1) with the corresponding 1QC frequencies~alongv2) of each13C
isotropic chemical shift.

FIG. 10. ~a! 2D 3Q–1Q correlation spectrum from@U–13C,
15N# – L-tyrosine at 4.7 T andv r /2p57.200 kHz, using the pulse scheme of
Fig. 9. The experimental parameters are as in Fig. 8, excepttexc

51.67 ms,t rec50.83 ms,vnut
H /2p566 kHz during13C pulses.~b! Zoom of

the aromatic region@dashed box in~a!#.
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this case@U–13C, 15N#-labeled L-tyrosine. A total of 8.2%
3QF efficiency was obtained at 4.7 T andv r /2p
57.300 kHz. The 3QF efficiency of the aromatic carbons
amounts overall to more than 10%, while that of the alanine
segment of the molecule is less than 4%. The intensities of
the latter could not be significantly enhanced by using longer
excitation intervals, which we attribute to strong interfer-
ences from the surrounding protons: as opposed to dAla, the
entire1H dipolar network is intact in this sample. Additional
discussion about heteronuclear decoupling in these experi-
ments are provided in the supplementary material.50

C. Homonuclear 3Q–1Q correlation spectroscopy

A detailed discussion about various 2D correlation strat-
egies employing 3QC and their structural information con-
tent will be given elsewhere. Here we only summarize the
most important features of the 3Q–1Q correlation experi-
ment.

A pulse scheme for 3Q–1Q correlation spectroscopy is
depicted in Fig. 9. After a cross-polarization interval, longi-
tudinal magnetization is obtained by ap/2 pulse. Next, 3QC
is created by the (R183

7)31 sequence of total durationtexc,
corresponding to an arbitrary integer of completed R183

7

blocks. Then follows an interval ‘‘t1’’ during which each
3QC evolves under the sum of chemical shift interactions
within each spin triplet. At the end of the interval, the 3QC
has acquired a phase factor involving the sum of isotropic
chemical shifts, exp$it1(vi

iso1v j
iso1vk

iso)% ~disregarding CSA
contributions!. This frequency is generally unique to each
3QC and corresponds to thev1 coordinate in the 2D 3Q–1Q
correlation spectrum. Next, the 3QC are reconverted into ob-
servable transverse magnetization by another sequence of
(R183

7)31 irradiation of durationt rec ~not necessarily the
same astexc) followed by ap/2 pulse. This block of pulses is
phase cycled to solely allow the coherence order transfer
63→21. The signal is subsequently acquired during ‘‘t2 .’’

Figure 10 shows the resulting 3Q–1Q13C correlation
spectrum obtained from U–@13C, 15N# – L-tyrosine. As this
molecule@Fig. 8~a!# comprise seven inequivalent13C nuclei,
one expects in total seven different groups of 3QC signals in
its 2D spectrum, if the 3QC excited only involves nuclei not
separated by more than two bonds. These predictions are
confirmed from the 2D spectrum. Note that for a given 3QC
frequency inv1 , one peak appears in thev2 dimension for
each distinct spin, unless there are degeneracies in the chemi-
cal shifts, as in the case of Cz – Ce – Ce8. The only peculiar
feature of the 2D spectrum of tyrosine is the Ca – Cb – Cg

3QC, for which the corresponding Cg signal is missing
in v2 .

VII. CONCLUSIONS

By means of an extended second order AHT treatment of
symmetry-based pulse sequences, we have designed 3Q re-
coupling schemes generating trilinear dipolar average Hamil-
tonians and applied them in the context of13C 3QC excita-
tion in rotating solids. We obtained 15.4% 3QF efficiency in
a powder of partially deuterated13C3 L-alanine, and 8.2% in
@U–13C# – L-tyrosine. As about 2–3 times higher 3QF effi-

ciencies are offered experimentally by the new approach
compared to the previously best broadband technique,42

comparable spectral S/N ratios are offered within an order of
magnitude shorter experimental time. Alternatively, it allows
application to larger molecular systems, although the 3QF
efficiency delivered is still not high enough for large biomol-
ecules. Nevertheless, the new approach may directly replace
that of Ref. 42 as building block in experiments for estimat-
ing molecular torsion angles,43 further combined with 2D
correlation experiments for the measurement of multiple tor-
sion angles as previously demonstrated by analogous 2Q
experiments.63 Other possibilities include tests for spin
counting45 and spectral editing by 3QF.8

The main inherent limitation with the second order based
dipolar recoupling approach is the small sizes of the re-
coupled terms, making the recoupling susceptible to other
interfering interactions such as chemical shifts. This is rem-
edied partially by using windowed pulse elements that sig-
nificantly enhances the second order dipolar scaling factors,
provided that sufficiently strong rf pulses may be employed.

The theoretical aspects of this work extends previous
treatments of symmetry-based pulse sequences11–13,15–20,23,34

by ~i! allowing a quick assessment of which terms arede-
coupledto second order AHT for MQ phases cycles and their
combination with phase inversion supercycles and~ii ! quan-
titative determination of theremaining recoupledsecond or-
der terms. This may provide further insight into compensa-
tion mechanisms to interfering interactions in symmetry-
based recoupling and decoupling schemes. Further,
extensions to heteronuclear recoupling experiments by em-
ploying MQ phase cycles on dual rf channels12 may be en-
visaged, as well as the engineering of higher-order MQ se-
lective homonuclear recoupling sequences. The symmetry-
based framework may also find applications outside the
immediate scope of conventional recoupling and decoupling
in MAS NMR, for example, in zero field NMR at high field64

and in quantum information processing through solid state
NMR.65

Further work is required to circumvent the problems
with MQF losses in second order based recoupling experi-
ments. However, this is motivated by the superior efficien-
cies they promise compared to recoupling techniques based
on first order average Hamiltonians for high order MQC ex-
citation.
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APPENDIX: SECOND ORDER SCALING FACTORS
FOR ARBITRARY PULSE ELEMENTS

Here the calculation of the factorK
m1l1m1

m2l2m2
in Eq. ~37! is

presented for an arbitrary pulse elementE0, analogous to that
of the first order case in Ref. 12. Assume that the elementE0
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is built of a sequence ofN rectangular pulses with flip angles
and phases (j0)f0

,(j1)f1
...,(jN21)fN21

and rf nutation fre-

quenciesvnut
0 ,vnut

1 ,...,vnut
N21. The durations of the pulses are

given by t0 ,t1 ,...,tN21 , where jp5vnut
p tp . Define the

pulse Euler angles as follows:

Vp5~Ap ,Bp ,Gp!5S fp2
p

2
,2jp ,2fp1

p

2 D . ~A1!

The factorK
m1l1m1

m2l2m2
in Eq. ~37! may be written as the sum of

two parts resulting from the time integration over rectangular
and triangular integration areas~similar to those shown in
Fig. 2!:

K
m1l1m1

m2l2m2
5K

m1l1m1

m2l2m2

h
1K

m1l1m1

m2l2m2

n
. ~A2!

The rectangular and triangular parts are given by

K
m1l1m1

m2l2m2

h
5 (

p851

N21
tp8
tE

K̃m2l2m2

~p8! (
p50

p821
tp

tE
K̃m1l1m1

~p! , ~A3!

K
m1l1m1

m2l2m2

n
5 (

p50

N21 S tp

tE
D 2

K̃
m1l1m1

m2l2m2

~p!
~A4!

and the calculation ofK̃mlm
(p) is outlined in Ref. 12. The con-

tributions K̃
m1l1m1

m2l2m2

(p)
from the individual pulses are

K̃
m1l1m1

m2l2m2

~0!
5K

m1l1m1

m2l2m2

~0!
,

K̃
m1l1m1

m2l2m2

~1!
5exp$ i ~m21m1!v rt0% (

m28,m18
D

m2m
28

l2 ~Ṽ0
~2!!

3D
m1m

18

l1 ~Ṽ0
~1!!K

m1l1m18

m2l2m28

~1!
, ... , ~A5!

K̃
m1l1m1

m2l2m2

~p!
5expH i ~m21m1!v r (

p850

p21

tp8J
3 (

m28, m18
D

m2m
28

l2 ~Ṽp21
~2! !D

m1m
18

l1 ~Ṽp21
~1! !K

m1l1m18

m2l2m28
~p!

.

The termsK
m1l1m1

m2l2m2

(p)
are given by

K
m1l1m1

m2l2m2

~p!
5exp$2 i ~m21m1!Ap%

3tp
22E

0

tp
dt8E

0

t8
dt dm20

l2 S Bp

t8

tp
Ddm10

l1 S Bp

t

tp
D

3exp$ iv r~m2t81m1t !%. ~A6!

The Wigner elementsD
m2m

28

l2 (Ṽp
(2)) andD

m1m
18

l1 (Ṽp
(1)) are de-

fined through the iterations

D
m2m

28

l2 ~Ṽp
~2!!5(

m29
D

m2m
29

l2 ~Ṽp21
~2! !D

m
29m

28

l2 ~Vp!, ~A7!

D
m2m

28

l2 ~Ṽ0
~2!!5D

m2m
28

l2 ~V0!, ~A8!

and

D
m1m

18

l1 ~Ṽp
~1!!5(

m19
D

m1m
19

l1 ~Ṽp21
~1! !D

m
19m

18

l1 ~Vp!, ~A9!

D
m1m

18

l1 ~Ṽ0
~1!!5D

m1m
18

l1 ~V0!. ~A10!

The case of smooth rf modulations may be handled by taking
the limit of largeN. Note that this calculation applies gen-
erally to any elementE0 of pulses and windows, applied
either once, or implemented periodically within the
symmetry-based framework for RNn

n or CNn
n schemes.
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