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The average Hamiltonian theoffHT) of several classes of symmetry-based radio-frequency pulse
sequences is developed to second order, allowing quantitative analyses of a wide range of
recoupling and decoupling applications in magic-angle-spinning solid state nuclear magnetic
resonance. General closed analytical expressions are presented for a cross term between any two
interactions recoupled to second order AHT. We classify them into different categories and show
that some properties of the recoupling pulse sequence may be predicted directly from this
classification. These results are applied to examine a novel homonuclear recoupling strategy,
effecting a second order average dipolar Hamiltonian comprising trilinear triple qua@@nspin
operators. We discuss general features and design principles of such 3Q recoupling sequences and
demonstrate by numerical simulations and experiments that they provide more efficient excitation of
13C 3Q coherences compared to previous techniques. We passed up to 15% of the signal through a
state of 3Q coherence in rotating powders of unifortig-labeled alanine and tyrosine. Second

order recoupling-basedC homonuclear 3Q correlation spectroscopy is introduced and
demonstrated on tyrosine. ®004 American Institute of Physic§DOI: 10.1063/1.1738102

I. INTRODUCTION In the framework of average Hamiltonian theory
(AHT)? the spin dynamics is governed by a time-

One reason for the success of solid state nuclear magndependent average HamiltoniéhH), H, representing the
netic resonancéNMR) in determining molecular structure effective interaction resulting from the commensurate use of
and dynamics is the high control offered to selectively preqvAS and rf pulse sequences over a perlbcEmploying a
serve and suppress various nuclear spin interactions duringerturbation order indexing starting at 8n¥ the average
the experiment.® The manipulations may broadly be classi- Hamiltonian may be expressed according to the Magnus
fied into recoupling, decoupling and preservation of a giverexpansiort?
interaction. _ o _

Decouplingleads to spin dynamics in the absence of a H=H®M+H®@+H® +... (1)
given interaction Hamiltonian. One example is magic-angl
spinning(MAS), carried out by rapid rotation of the sample
at the “magic angle” @,,=arctanv2) with respect to the — 1 th”

Svith the first two orders of perturbation given by

Lo . . . [ J——
external magnetic field direction. MAS averages out aniso- M T

tropic interactions transforming under rotations as second
rank tensors, e.g., chemical shift anisotrodi€SA) and di- —2 B
polar couplings Recoupling® usually effected by applica- H¥'=(2iT) ft
tion of radio-frequencyrf) pulses, selectively recovers a cer-

tain anisotropy under MAS conditions but may also involve Heretg denotes the start of the pu|3e sequencera('td is an

the transformation of an interaction into a form differentinteraction frame Hamiltonian, related to the laboratory-
from its initial high-field spin Hamiltonian. An example is in frame HamiltoniarH (t) by a unitary transformation induced
multiple-quantum(MQ) NMR on spins-1/2® which usu- by the rf pulses.

ally employs a dipolar Hamiltonian comprising double-  The present work focuses on the theoretical development
quantum(2Q) spin operators§’ S"), whereas the high-field and design of so-called symmetry-based/Rind QN pulse
dipolar Hamiltonian is proportional to zero-quantu@Q)  sequence$!!~1315-34Sych schemes directly exploit the
operators § S*). unique response of each spin interaction to the combined
modulations of MAS and rf pulses. The former transforms
dauthor to whom correspondence should be addressed. Electronic maiF.he sp_atlal parts of the Ham'l_toman’ wher_eas the latter modu-
mattias@physc.su.se lates its spin part$-3 By choice of three integer symmetry

p dt H(t), )

‘3”dt'ﬁ'dt[ﬁ(t'),ﬁ(t)]. 3)
to

0
0
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numbers(N, n, ») one can selectively recouple a given part 3Q frequency-selectivexcitation techniqué®
of an interaction, while suppressing its other parts, as well as  This paper is organized as follows: Section Il introduces
other interaction$® While the underlying AHT of symmetry- the pulse sequences employed in this work. Section IIl pre-
based pulse sequences is well-developed to first order AHBents the second order average Hamiltonian theory of these
allowing quantitative calculations of the size of the re-schemes from a general standpoint, which is subsequently
coupled interaction& 3519t is currently only qualitative  applied in the context of 3Q recoupling in Sec. IV, where the
to higher orders Here we extend the second order average3Q average Hamiltonian and its resulting spin dynamics is
Hamiltonian theory of symmetry-based schemeguantita-  derived and discussed. Section V describes the engineering
tive evaluations of recoupled second order terms and developnd evaluation of 3Q recoupling sequences by numerical
a theoretical framework foMQ phase cyclés'®1?35and  simulations, and the analytical predictions of Sec. IV are
their combination with phase inversion supercydfes It tested. In particular, we focus on numerical evaluations of
may potentially be applied to analyze a wide range ofone MQ phase cycl¢denoted (R1§31] and supercycles
symmetry-based recoupling and decoupling problems. thereof under experimentally realistic scenarios, including
In most situations, the higher order Magnus expansiorihe effects of chemical shift interactions and rf amplitude
terms are undesirable and targets for decouptih@ur re-  errors. Next follows an experimental section, where
sults assist in dealing with such problems both by predicting(R18§)31 is used for¥C 3QC excitation in uniformly
the suppression of certain classes of terms up to second ord€€-labeled L-alanine and L-tyrosine and second order re-
AHT, as well as providing a quantitative assessment of th&oupling is demonstrated in the context B€ 3QC—-1QC
sizes of the remaining terms. However, here we adopt a difiomonuclear correlation spectroscopy. The results are finally
ferent viewpoint in that certaisecond order terms are de- summarized in the concluding section.
sirable and actively recoupledhereby shifting the spotlight
ontp the second ord.er, rather. than first _orgler average Hamlh_ PULSE SEQUENCES
tonian. Along these ideas, building on similar approaches for
order-selective MQC excitation in static sampiese design We will build rf pulse schemes around two pulse se-
triple-quantum(3Q) selective pulse sequences useful in thequence classes, denotedR (Refs. 12, 13, and 19and
context of *C spins undergoing MAS. By this approach, a CN? . 11:1315161846rhey are defined by three integer “sym-
spin ensemble state of 3QC is created directly from equilibmetry numbers”(N, n, ») and a train of pulses, [see Fig.
rium longitudinal magnetizatiorr. 1(a)], derived from a basic elemerf® of duration ¢
High-order MQC excitation involving'H spins under =nr, /N, where 7,=27/w, is the rotational period and,
MAS conditions is fairly straightforwaré,~** as the homo- the spinning frequency. The two pulse sequence classes are
nuclear dipolar interactions are dominant and chemical shiftiistinguished by the properties 6f and how the RI” and
interactions are small. However, it is a challenging task forCN; sequence is built from the basic element. AN/R
applications to less magnetic nuclei, e]§C, that addition- schemdFig. 1(b)] is constructed from an inversion element
ally have a large spread of chemical shift interactions. Few®="R, i.e., a composite pulse effecting a net rotationmof
reports exist of excitation dfC MQC of orders higher than around the rotating frameaxis. Another elemer®’ may be
two in samples undergoing MAB:*2-4°3QC excitation ex- generated fronR by reversing the sign of all its rf phases.
ploiting “second order recoupling” requires tight control of The RN; scheme is formed by repeating the pair
the various terms of the Magnus expansion, as it demandR ,,,nR_ .,y N/2 times. AN} scheme, shown in Fig.(d),
efficient suppression of all dipolar and chemical shift contri-is built around a cyclic pulse trairff=C), meaning that in
butions to first order; these terms are about an order of maghe absence of other spin interactions, the rf pulseS -
nitude larger than the desired second order average Hamilurn the spins to their original states at the completed
tonian 3Q terms. This is achieved bjNRor CN? sequences element: The N/ sequence is obtained by concatenafing
combined with MQ phase cycles and phase inversion supephase-shifted cycles, such that théh element of the se-
cycles. quence(q, has an overall phase shiftz2jv/N. In the fol-
Despite the challenges encountered in the design of 3@®wing, we will employ the shorthand notatiaf= RN/, or
selective sequences, the reward is a highly efficient mecha5=CN; . Given a sequenc§, S’ is generated by reversing
nism of 3QC excitation in powders: this is crucial since thethe sign of all phases within the basic element, as well as the
NMR signal intensity is directly proportional to the triple- sign of the symmetry numbep:'*%4 S'=RN_" or S’
quantum filter(3QPF efficiency. Theoretically, about 55% of =CN,".
the total signal may be recovered in a triple-quantum filtra-  Generally, only a subset of the average Hamiltonian
tion (3QP experiment by this broadband approach. This isterms generated h§ are desirable. The unwanted ones may
more than three times higher than offered by previous techbe suppressed using supercycles, built from a concatenation
niques for 3Q excitation among spins-1/2 under MASof completed R}, or CN; sequences, combined according to
conditions$®*2 and comparable to 2QF efficiencies from 2Q certain patterns. Here we will exploit two such supercycle
recoupling techniques in common use. Experimentally, weschemesMQ phase cyclés®3°[Fig. 1(d)] andphase inver-
have passed 10—15% of the signal through 3QC in uniformlysion supercycldd?3® [Fig. 1(e)]. An MQ phase cycle,
13C labeled amino acids, which is about three times largeSMX, closely resembles aNT, sequence, witM replacingN
than that achieved by the previously best broadband ofition, and x replacingy: SM* is constructed by concatenationhf
and slightly higher than the result of a recently introducedphase-shifted sequencss, such that theth element has an
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FIG. 1. The hierarchy of the various symmetry-based pulse schemes em-

ployed.(a) A general rotor-synchronized pulse sequence buill elements
E0,&11....En—1, derived from a basic eleme&?. The indicated time-points
are discussed in Sec. Il C {b) RN} sequence(c) CN; sequence. They are
abbreviatedS and used in supercycles, shown@—(f). (d) The structure of
an MQ phase cycleSMX. (e) A phase inversion supercycl8S’, where the
sequenceS’ (shadedlis obtained by sign reversal of all phasesf(f) A
nested MQ phase and inversion supercycl’(MX. (g) Pulse scheme for
a triple-quantum filtratiof3QF) experimentRefs. 30, 35, and 44ncorpo-
rating anSMX sequence for excitation and reconversion of 3QC.

overall phase shift Zpx/M, with p=0,1,...M —1. The re-
sulting MQ phase cycle extends over the interviady
=nMr,. It is denoted (RI;)MX or (CN;)MX, depending
on the identity ofS. The only restriction is thaf should be
cyclic, which is fulfilled both by completed IR, and QN;,

A. Brinkmann and M. Edén

each element in a series of alternating sequescasd S’
(SS,)MXESOS(,)SZW)(/MSL(277le)8477le

XS,—(47TX/M) v 'S[ZW(M*1)X]/M8[,*277(M71)X]/M :
(4
This combination of MQ phase-cycling and phase-inversion

supercycling is slightly different from that presented in Refs.
13 and 23, which corresponds to

[SS" 1ol SS" 12myml SS 1amyim -+ [ SS Tr2m(m—1)x1m - ©

As discussed below, the two supercycles produce equivalent
results in special cases, depending on the properties of the
sequences.

lll. THEORY
A. Spin interactions and Hamiltonians

The HamiltonianH” of a spin interactiom is a product
of a componenm of alth rank spatial irreducible spherical
tensorA®, and a component of a th rank spin irreducible
spherical tensor operatdr. The spin and spatial parts are
denotedA,’}n andT;‘M , respectively, with the components tak-
ing integer values in the rangel=m=<I| and — A= u=<\.
The homonuclear dipolar interaction is second rank with re-
spect to rotations, i.e., of its spatial and spin rank lar@
and A\ =2. Detailed classifications of the rotational symme-
tries of other spin interactions may be found in Refs. 1, 2, 13,
and 47.

Restricting the analysis to coupled spins-1/2, the total
laboratory-frame Hamiltonian is the sum over all spin inter-
actions of the system and the rf Hamiltonidi(t),

H=Hg )+ X Himolb),
AN, I,m

(6)

H,(t) represents the rf field Hamiltonian and each spin
Hamiltonian is uniquely specified by a quartet of integers
(I,m,\, 1) with the restrictionu=0 in the high-field limit.
Explicit expressions for the Hamiltonians may be found in
Refs. 1, 2, 13, and 47. Each Hamiltonian term may be ex-
pressed as a product of a spin tensor component and a cor-
responding interaction frequen@){‘m(t),

Hlj}nxo(t): wlj?n(t)zj\o
with

0im(1) =[ Ay Rdio( BrOEXP — iM(ag — 0 )} (8)
[A,’}n]R is themth component of the spatial tensor in a rotor

(7)

sequences. A phase inversion supercycle constitutes the p&diameR fixed on the sample holder. Thzeaxis of this frame

SS', denoted RIJRN, " and QN/CN,,” for S=RN; or S
=CN;, respectively.

is inclined at the anglegg, with respect to the static mag-
netic field direction;Bg, =arctanv2 for exact magic-angle

Nestedsupercycles may be formed by combining MQ spinning.d'mo(ﬁ) is a reduced Wigner elemefit,and a%L

phase cycles and phase inversion supercycl&sThe result
of first forming a phase inversion sequeng&’ and subse-
quently applying MQ phase cycling is denote$iY)M* and

depicted in Fig. ff). It is constructed by applying an incre-

menting phase shiftreversed in sign for odd elemepnt®

defines the position of the rotor at time poirt 0. The rotor-
frame component of the interactionis related to that in the
principal axis systen® by a sequence of rotations, involving
an intermediate molecular frani fixed on an arbitrary mo-
lecular fragment,
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' starts att®, and an arbitrary time point therein is denotgd

[A} R= , 2 [A} 1PDL, (Q3wd, (Bur) (tgstq<tqg+1), related to that within thefirst element
m’,m"=—| through the time translatio =t,+q7e . Time points within
X expl— i (M ayrt Myyr)}- (9) thebasicelements® are denoted®, i.e., 0<t°< ¢, related

to to within the first element of the sequence ty=t,—tJ.*2

The rf propagatorUrf(tq,tg), active from the starting
time pointtg out to ty within the gth element, may be ex-

In the case of the homonucle&-S through-space dipolar
interaction between two spifsandk, only [ AX]P= \/gbjk is

nonzero, yvith the coupling constabf relf_;lted t_o the inter- pressed as three consecutive rotation operaltt}f(stq,tg)

nuclear dlstar21ce|sjik3 and the gyromagnetic ratigs by by, =Ry(ag)Ry(Bq)Ro(¥q) involving three time dependent rf

=~ (kol4m) yshrj". Euler angles €q.Bq,7q) = (a(ty),B(ty), ¥tg)). 17134

Analogously, the rf propagator from the starting time point

t=0 of the basic element up t6° may be expressed
Here we outline our strategy for using the schemes otJ¢(t°,0)=R,(a®)R,(8%)R,(7°).

Fig. 1 in the context of homonuclear 3Q dipolar recoupling, ~ Prior to application of AHT, the spin interaction terms

assuming a system @ht leas}t three coupled spins-1/@a-  are transformed into the interaction frame of the rf field ac-

beledi, j, andk). The goal is to design a pulse sequencecording to

whose average dipolar Hamiltonian compréssely the op-

erators T35 ;~S"S"S, , multiplied with a factor propor- H(tg) = Uty 1 TH(t) Un(ty,td) (10)

tional to products of dipolar coupling constants. However,

suchtrilinear spin operators may not be present in the firstesulting in the following interaction frame Hamiltonian at

order average HamiltoniaH®) as it, according to Eq(2),  time pointt:

corresponds to the time average of a sequence of unitary

transformations of the dipolar Hamiltonian, which itself is A(t,) = E F’ﬁnm(tq):A E Z)ﬁm\ﬂ(tq)TQﬂ

B. 3Q recoupling strategies

proportional to atwo-spin operatorT,, . Nevertheless, the LW W

second order AHEQ. (3)] may comprise trilinear spin op- (11)
erators, originating from commutators between spin opera-
tors from different pairs of couplings within the spin system, Here
e.g.[T4,,, Ty, 11~T4%,. Any pulse sequence generating  _ AR 0 1al
such terms, among others, is referred to as gid@grecou- Dimaw(te) = [Aim]™ exp—imagy}dmo( BrL)

pling. If only 3Q operators are presefup to a certain order xd (= Bg)expi +imet (12)
of the Magnus expansigithe sequence is referred to as be- wol = Fa Rinvg &

ing 3Q selectiveHence, the aim of 3Q selective recoupling with the Euler angles dq.Bq.7q) related to the pulse se-
is to arrange that all first order AH contributions vanish, quence symmetry classes accordintf to

together with all terms ifH®), except those resulting from

B u(to) is given by?

commutatoriTgﬂ2 ,Tiz"ﬂl] obeying u; + p,= * 3. Bo for CN/,
An MQ phase cycleSMX restricts the average Hamil- Ba= Bo+qm for RN, (13
tonian to only comprise terms having spin operator compo-
nentsyu being integral multiples oM.% The procedure is 2y
formally similar to coherence selection in NMR Ya= Y0~ T q. (14
experiment$? but distinct in that the MQ phase cycling op-
erates on the spin Hamiltonian instead of on the spin enUsing the substitutions
semble coherences. Hena&8* ! schemes effect 3Q recou-
pling sinceH® terms with u;+ u,=3Z (Z is any integer Q=expi27wQIN}, (15)
are recoupled. However, because zero-quantZ) terms
with w1+ u,=0 are also symmetry allowed, the recoupling mn—uv for CN?,
is not 3Q selective but @/ZQ selective. The undesired ZQ
terms may, however, be removed by a nest&d'§3=* Q= mn—,uv—% for RN/, (16

scheme, a§S’)3*! scheme is 3Q selective to second order.
The following sectionglll C—Ill F) give ageneralsec- ) )
ond order average Hamiltonian description of the varioudh® Symmetry-based sequences impose the following
pulse schemes, subsequently applied to 3Q recoupling iffitéraction-frame time symmetry:
Sec. IV.
Bimau(tg) = Qi . (to)- (17
C. Average Hamiltonian theory for C N}, and RN},

sequences Hence, the interaction frame frequency at the time pgjnt

i within the gth pulse element of the sequence is relatethto

1. Interaction frame symmetry within its first element by a simple exponential function in-
The rotor-synchronized pulse sequence starts at timeolving the spin as well as spatial components and the sym-

point t8, as illustrated in Fig. (). The gth element £;) metry numbers,n,») of the pulse scheme.
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2. First order average Hamiltonian

In order to obtain a time-independent average Hamil-
tonian, we apply the Magnus expansibto the interaction
frame Hamiltonian Eq(11). The first order AH is calculated
from Eq. (2) giving

tT

t(]

N-1

[N2 [N1]

HY= > HL= 2 omuTw (18)
N ALL,mN,

with

_ _ t°+T -
w{}n)\,u:T 1]{00 wﬁn)\,u,(t) (19) |

0 —

The periodicity in Eq(17) allows expressin@ﬁnw accord- —
ing to =

—A _ A R . O O || . H H . H
wImA;L_SIm)\,uKIm)\,u[AIm] exp{_lm(aRL_ wrto)}7 (20) I tg t(11 tg t?v_g t(z)v_1 t8+T'

where k|, , is a scaling factdr of the recoupled term with (=]
quantum numbersl (m,\, ). The sumSy,,,, only depends 7=
on the quantum numbers,n,\, ) and the symmetry num-

bers N,n, V) of the pulse sequence; it gives rise to fivet EIG. 2. The two—dimensional.intggre}tion area Qf@Z), with a selection of
order selection ruleaccording t61'13’15'19 time points and the summation indicgandq’ indicated.

o [ 1 ] --- [N=2]N-1]

1 i 0 if Q#1<Q#NZ, )
=— . 1 .
Smau N ¢=o 1 if 9=1Q=NZ, @) 3. Second order average Hamiltonian

whereZ is any integer(including zerd. Depending on the The second order AH may be written

class of symmetry-based pulse sequence, they may be trans- BN

formed tg*131>19 H?= > Hi oy, » (25

Agilaima N ke 1 imon g
mn—uv#NZ  for CN/, Apilima g e
Imw =Sm =0 if N (220 where the sum is taken over all second order cross terms

m”_/“”EEZA for RNy between a term of interactioA, with quantum numbers

(I,,my, N5, ), and that of interactiom\; with quantum
HereZ, is an integer with the same parity asfor even\,  numbers [;,m;,\1,u1). The individual cross terms are
Z, represents any even integer, whereas it corresponds to agjven by

odd integer if\ is odd. The scaling factokm,, [EQ. (20)] A AxA
2 1 2 1

depends on the quantum numbetsn{,\,u) of the re- Himp i, = w|2m2x2M2[T}\ PN M] (26)
coupled term, the type of pulse sequenc&[®r RN?) and Lmgey mpae o2
its symmetry numpersl\{,n,v), as well as on the pulses and with the interaction frequencies
phases of the basic pulse eleméht
| v _A2><Al_ . 1 to+T , ~ A ,
Aimo( BrU K 4 for CNp, w:Z:ZiZZZ_(ZIT) ftg" dt ftod |2fnzwz(t )
ima = dio(B )eXp[_i 2]K for RNy @3 o
mo RL lu’ N mA n Z)lAl::'nl)\l# (t) (27)

The factorK, , is defined with respect to the basic elementrhe range of the two-dimensional time integral is shown in
£ according to Fig. 2. The symmetry relationship of the interaction-frame
terms[Eq. (17)] leads to

(e .
KmAM:TE:LJO dtodZO(_IBO)eXp“(M70+mwrto)}i ~ A, ~A

1
(24) w|2m2)\2,u2(tql w|lm1)\1,ul(tq)
where the symbolt®, 8°, andy° refer to time points and rf =0y 0% (:?nz)\ (1)@ 1m1>\;w1(t°) (28)

Euler angles withing®, defined explicitly in Ref. 12. The
calculation ofK,, , for arbitrary elements? is discussed in  with Q, and Q, obtained from Eqs(15) and(16), e.g.,Q,
Ref. 12 and extensions to second order scaling factor calcu=exp{i2m(mon—u,»)/N} for CN; sequences. From Egs.
lations are presented in the Appendix. (27)and(28) follows that the second order average frequency
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TABLE I. Expressions 1‘0!332&#2 [Eqg. (32)] and Simzw

lymyNqp lymyNq
1-4 of second order averaael Il-l:lj\miltonian terms 1inltiule cas®ffaRd N} sequencesQ; andQ, are defined
as in Eq.(16), e.g.,Q;=m;n— u,v for CN; sequences anQ,=m;n— u,;v—A;N/2 for RN; sequences. The
following demonstrates the way to read the selection rules for the first row as an exampteu,v# NZ for
CN; sequences anmhlnfMvs&(NIZ)ZX1 for RN, sequences.

[Eqg. (35)] provided by the different R/C-categories

Selection rules

- N o - CIR
Szmz)\zﬂz Szmz)\zﬂz n RN category
[PUUTSVEY FUCTSTEY
N
min—u v #NZ :/:EZM
AND
N
0 0 MmoN—pu,v #NZ #—7 1
27
AND
N
(Mmy+my)n—(m1+uz)v  #NZ #EZMHZ
exp{—i /N N
—i—p{_ QN min=w v #NZ # -7,
2N sin{7Q, /N} 2™
AND
_ 1 B N 5
= N maN—puov #NZ iEZ"z
AND
- explimQ,/N} N
e T my+m)n—(u1+ )y =NZ =—
I2Nsin{7rQ2/N} (my+m)n—(u1+ u,) 2Z>\1“\2
N
mn—u, v =NZ ZEZ)‘l
AND
_; SinQ /N 0 Mon— oy #NZ % 3a
| - bN— s * =27,
2N sin{7Q, /N} 27
AND
N
(My+m)n—(us+uz)v  #NZ #5 Dy
N
min—u v #NZ ;&EZM
AND
iw 0 myNn—pw,v  =NZ =NZ>\ 3b
2N sin{7Q, /N} 27
AND
N
(Mmy+my)n—(um1+uz)v #NZ #:EZMHZ
_ N
min—uv =NZ ZEZM
AND
Nt L M-y =NZ -7 4
2N N 2 2 2%
AND
N
(Mmy+my)n—(m1+uz)v =Nz =§ZA1+,\2
_ALXA , . . )
term w'z;z}\ziz may be written The dimensionlessecond order scaling fact@crlzmzxzﬂ2 may
lmiN
l,mNu i 1M1
_Al 1Al ' be decomposed into two components,
2XAg Ay 9Rr AA1L R
@mon, TrKlzmz)‘zﬂz[Alzmz] [Allml]
lymi\gp lamyNgpg O A
. Koy = Kipmoh oy, T K1 pmah ey (30
X exp{ —i (m2+ ml)(ag,_— wrtg)}. (29) FLUTSTSY BLUURST LTS
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. . O A
where each contributior, ., ., and«, ., , , results from

lamyNgpg lamyNgpeg

A. Brinkmann and M. Edén

O

the integration over rectangular and triangular areas, respec-

tively (Fig. 2). The rectangular part is given by

O n o o

Kipmonuy — 2i Szmz 2M2A|2m2’\2:“'2 3D

EULTSYEY ELCRSY RN EUURSY

with the sum
N1 dl

q

2 o 2 ot (32
'1m1)\1#’-1

oMo guy — Klomohpup Klymyh gy - (33
lamahgpy
The triangular part in Eq30) is given by
A n A
Ky pmpnup Eszmz)\zﬂz lamaAoup (34)
l1myNqpg lamyNgpg TamMyNgpg
with
N-1
A
q
S ma Nz 2, Qjol (35

It can be evaluated to the closed expressions shown in Table  i\mxjx,

| and the supplementary materfaland will be discussed
further in the next section. The terwn:ilmzw2 in Eq. (31)

lamyNgpg
corresponds to the product of tfiest orderscaling factors of
the two interactionA, and A; [each calculated from Eq.

(23)]:

(BRL)dm o BRUK w1

myAguq

A —
Alzmz)\qu -

| | . av
W dnﬁzo(ﬁRL)drﬁlo(BRL)EXp[_'(“2+“1)W}Km2”2"2 for RNy,

This sum may be represented as the closed analytical forms
shown in Table | and the supplementary matetidbepend-

ing on the type of pulse sequence, the XM, is given
famyNgpg

by

for CNy,
(36)

myNgpq

with the factor,, ., representing an integral over the basic
LERS VSN

element£, according to

’ N ’
K ingh g, = TEZJ tof dt®d,2,(—B%)

LERSVEY
X exp{i (p2y® +myo t)}

xdylo(— BOexpli(u1y*+ Mot} (37)

The calculation ofKy,.,.., for arbitrary elements® is dis-
LTSV
cussed in the Appendix.

4. Classification of second order average
Hamiltonian terms

In case of the R/C-category 1, both sums vanish and the
second order term is suppressed: the selection rules are those
previously presented in Refs. 11, 12, and 19. In the case of
CN; sequences they can be transformed to

—ApXA;
oMo opy S2"‘2)‘2/‘2_32"‘2>‘zﬂz
IymyNq g FLUTSTZY limaNy g
mln_ /.L]_V:/: NZ
AND
if mzn_ ,LLzV?E NZ
AND
(Mmatmy)n—(uo+pm1)v#NZ
(38)
whereZ is any integer, not necessarily the same for all in-
equalities. In the case ofN§ sequences they correspond to

—Ao,XAq . S[] . S .
2MaAoktp 2MaAoko 2MA oty

. . . |
Different cases have to be distinguished when the sums >\ *  [mxu;  1mpge;

are evaluated in Eq$32) and(35), depending on the expo-
nents in Eq.(16) that dictatewhich selection rules are ful-
filled. A second order cross term with pairs of quantum num
bers{(l,,m,y,\5,u5),(I1,m;,N1,14)} may fall into one of

five R/C categorieslenoted 1, 2, 3a, 3b, and 4. Table | sum-

. . ] A
marizes the expressions for the suig, , ,, andS ., . ;

ELUCRSYE EULTSYEY

these are obtained from the generic forms given in the

supplementary materiaf.

( mln_,LLlV?‘: %Z)‘l
B AND
if < mzn_lu,zy?& %Z)‘Z (39)
AND
[ (Ma+m)n—(ua+p1) v# 37,4y,

whereZ, represents any integer with the same parity\as
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If a second order term belongs to one of the R/C- ﬁ(AZXAl) —<AzxA1>[
categories 2, 3a, 3b or 4 it &ymmetry allowednd has to be (lzﬂi 2 ('i:iiizi Tiguy W‘l
calculated explicitly. The symmetry-allowed second order
terms can be further classified according to the selectiofith the symmetrized cross term interaction frequency given
rules obeyed for the two involved spin interactions for thepy
corresponding first order average Hamiltonians. In the case

IP (42

of R/C-category 2both terms with the quantum numbers —<|A2XA1> I ol L 43)
. ms\ .
(I,,my, A5, 1) and Ql,ml,)\lé,ul) are sugpressed to first Crnre) :i:iiizi :2221;’2
order AHT. Then, both sumsS ., , andS ., . . are dif-
lmyhgpg 1ymyAg g By Eq. (29) it may be expressed as

ferent from zero and their explicit expressions depend on the

spatial and spin quantum numbers, as well as the symmetry S M) [A Al ]R[ Al IR

numbers of the pulse sequentzee Table ) If a second (Penz) U (et L pmy T g my

order term belongs to one of the R/C-categories 3a or 3b, one = B

of the two first order termsgither (I,,m,,\5,u5) OF X exp{—i(my+my)(ad — ot} (44)

(Iy,my,Nq, 1), IS Symmetry aIIowed whereas the other is

m
2 factor given by

'1"‘1)‘1/‘1
. |
leaving the rectangular contributio8 ,,,,.,. In case of
MmN gpq K 1amadgrug) = Kiomoh g, ™ Kiymph gy - (45
R/C-category 4both first order terms, I(;,m,,\»,u,) and fimakass” o Tamikapg o Tamahouy

(Iy,my ,Nq, 1), aresymmetry aIIowedb first order AHT. In

general, both sums MMty and Szmz}‘ ., are nonzero, but E. MQ phase cycles
'1"‘1"1/‘1 lamyNopy . . . X
their expressions depend neither on the quantum numbers of [N this section we discuss the AHT ¢iM* sequences

the terms, nor on the symmetry numbersy) of the pulse ~ With S=CN; or S=RN,. From the construction of &M*
sequencéTable ). sequence foIIows another interaction frame symmetry, in ad-

dition to that given in Eq(17),

Dhn(ta ™ PT)=PPDiiy (L) (46)
D. Symmetrized second order average Herep is an integer between 0 ad —1 and the following
Hamiltonian terms substitutions are used:
onsider the two second order average Hamiltonian p_ exp(i2mP/M1, 47)
termsHI N dHI mpn, related by a simultaneous ex-
'1"‘1}‘1#1 I2'“2)‘2/‘2 P=—puyx. (48

change of the interactions, andA ;, as well as therder of

the two sets of quantum numbers,m,,\,,u,) and 1. First order average Hamiltonian

(I4,m;,Nq,11). Both cross terms are simultaneously sym- ) o

metry allowed or suppressed and they appear pairwise in the 1he first order average Hamiltonian for &M* se-
sum of Eq.(25). Therefore, it is convenient to express the dUeNCe is constructed through E@8), where

second order AH as a sum symmetrizederms according to

—A t0+ TSM
) =T t 49
ﬁ(Z): —(ApxAq) (40) Imap ™ SM.[IO |m)\,u( ) ( )
interaction ('igiiizi
_ pairs From the periodic symmetries Eq4.7) and(46) this may be
with simplified to
(ApxAp) | TARXA; A XA, B _
(lZmZ}‘Z'“Z)_ IomoAomy l1maNypq (41) wIJ}n)\M:SMSIm)\MKIm)\M[AI/%]Rexp{_Im(agL_ wrtg)}
Tamahypey ELURSYZ PLURSY

50
The terms included in the summation are deduced as follows: ) . 0
First select two interactions, andA; and find the complete  With Simy,, @nd Kimap defined in Egs(21) and(23), respec-
set of cross terms recoupled from theideredsetA,x A,  tvely, and the suns, stemming from the MQ phase cycle:
using the selection rules Eq&38) or (39). Then form the M1 ]
symmetrized second order AH according to Et) for each o :i E PP 0 if P#leP#MZ,
of these terms; this procedure automatically takes all cross * M ;=0 1 if P=1eP=MZ.
terms of the set\ ;X A, into account. The protocol is re-
peated for alldistinct symmetrized pairsA,x A,). The product of sums, S, gives rise to the selection rules

Equation(26) may now be cast into a symmetrized form for the first order AH terms of asMX sequencé®

(51)
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(mn—uv#N2Z)
Hlm)\,u. /.lem}\,uzo if (

OR (ux#MZ')

for (CNj)MX

N
mn—,uvaﬁEZ)\) OR (ux#MZ'") for (RNy)MX

A. Brinkmann and M. Edén

(52

whereZ andZ’ are arbitrary integers and, is any integer
with the same parity as. As discussed in Refs. 13 and 35 sH
the first order selection rule for the AH of &M ~* scheme is
related to that of ©; and RN} sequence$Eg. (22)], with

M—1
Mz,u_ 21732 E

(58)

the additional requirementhat all second order terms are |t may be simplified to the closed analytical forms given in

suppressedf the productuy is notan integer multiple oM.

Table Il, obtained from the generic form given in the supple-

mentary material’ The triangular part in Eq(56) is given

by
2. Second order average Hamiltonian
The second order average Hamiltonian for&viX se- K|S'r\nm>\ ; =MSs2
quence is given by Eq26), with the time integration ex- ook g

tending over the entire supercycle

0 ’

JZX Al . 1 tO+TSM , t

Do, = (2T ™[ &7 | ot
I1myNgpg 0 0

phase cyclesSMX.

TABLE II. Expressions fots,, ,
on the MQ-category of the second order average Hamiltonian term for MQ-

7
Kiymonu,
I1myNgpq

SA
. [Eq. (58)] andbyzﬂ

(59

§ [Eg. (60)] depending

~ A, Iy~ Aq
X w'zmzkzﬂz(t )w|1m1>\1M1(t)' (53 MQ MQ
SE se selection rules category
H : 2M1 Moky
In the presence of aBMX sequence, the interaction frame vz
symmetry ofw 2 - implies the following property of a ”l/i‘ND
MaAou2
product of two such terms: 0 0 HoXFMZ 1
AND
~A ~A
[7) anzkzﬂ (tgy+p' T, ;M #1( qtPT) (st p)x#MZ
explimu/M}
— pp' ppp A RS #MZ
=P; Pio 2mz)\ “y (t q’ 1m1)\1,u1(tq) (54 '2m sin{mux/M} Hax
, . . AND
with  Py=exp{—i2mux/M} and P,= exp{—|277,u2X/M} "
XAy = = #MZ 2
given from Eqs(47) and(48). The termwme2 may con- M HaX
1ImiA s AND
sequently be expressed as expl—imupxIM}
i (H1+p2)x=MZ
—ApxAy SM RIA R 2M sin{ o x/M}
w|2m2)\2,u,2_ TTK|2I’T12)\2/_L2[ 2m2] [ ]
EUUTSYEY FLUTSV! pix=MZ
. , AND
xexp{—i(my+my)(ad —otd)}, (55 . explimuxIM}
"M sin{muoxIM} 0 tax#MZ sa
SV . . . sin{mruox/M}
wherex, ., IS the dimensionless second order scaling fac- AND
famyNgpg ] ) (1t pma)x#MZ
tor of theSMX sequence. In analogy with E(O) it may be
. mix#MZ
written as a sum of two components,
SM _smd SMA . AND
Kipmohpu, = K'zmz}‘zf‘2+ Kipmongu, - (56) —j expi Tw’_lle} 0 Mmox=MZ 3b
ELURSTE lamyNqpg lamyNgpg 2M sin{mru xIM}
L AND
The rectangular part is given by (i1 1y y £ MZ
1 2
S0 Mngg S S pix=MZ
lamahouy ™ D MrokgToMphouy =l MyA g g
Imo\ g AND
XK1 mok iy K1 moN gy (57) M-1 1 =Mz 4
2MaA ol My A g M M HaX
AND

where the SUMS .\, and S mpa g, are defined by Eg.
(21) with Klymoh ppiy and KIymoh gy being the corresponding

(p1tu)x=MZ

first order scaling factors and the s&ﬁ\z#l corresponding to
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wherek, , is the second order scaling factor defined in N
ps M=t 52, A
Eq. (30) and the sun®;, , defined by AND
B= OR OR Mox#FMZ
M—-1
1 N AND
A —
Spipny = M2 pZO PEPY. (€0 MoN— pov# szz (mq1+po)x#=MZ

(64)

The corresponding inequalities for KN¢)MX schemes are
llmniZi obtained by the substitutiorN{2)Z,—NZ'. If Eqg. (62) is
andSAm .. in the case of &2 or RN, sequences, five dif- not fulfilled, the second ordgr average Hamiltonian term is
2125242 recoupled due to the combined C/R and MQ phase-cycle

MmN gpq .
ferentMQ categoriesmust be distinguished when evaluating Symmetries. .
st ands? . for anSMX sequence. As these five catego- ~ Condition A is the direct second order analogue of the
Moty

VHong : ; )
ries couple together with the five categories provided by théIrSt order selection rule Eq52): the role of MQ phase cy-

compound @l; or RN} schemes, altogether 25 different ;I]mg IS su;nply to impose ;cheJ:equwefThent that f)lplztl,
casegpresented in the supplementary matéfjahave to be € sum of spin componentg$+ ) of the recoupled cross

distinguished when analyzing the second order averagEeerm must be an Integer multiple M. However, due fo the
Hamiltonian of anSM* sequence. presence of ternB, it is not necessarilytrue that all cross

terms recoupled by awMX sequence satisfyu{;+ u2) x
=MZ. Equation(64) implies that a cross term &lso sym-
metry allowed if both its componentsl,(m,,\5,u,) and
3. Second order selection rules for ~ SMX sequences (I1,mq,N1,11), aresimultaneouslyecoupled to first order,
andadditionally, at least one of them has a spin component
being an integer multiple oM [or that the sum g4+ u,)

fill this requiremen}. However, for most symmetries
% ,n,v), contributions from Eq(64) are rare.

Its simplified analytical forms are given in Table II.
Similarly to the previous treatment of the su@%nZA

From the definition of the scaling factors for the second
order average Hamiltonian terms in the presence SVE
sequence, the selection rules for the second order terms ¢
be expressed as

—AoXA
H'zg‘z}‘zﬂlzzo
FUSTSYZY F. The phase inversion supercycle
(s =0 OR s =0) In this work, our primary concern is the combination of
Kkt Mo, MQ phase cyclesSMX [Fig. 1(d)] and phase inversion su-
if { AND (61)  percyclesSS’ [Fig. 1(e)], as they may provide 3Q selective
0 _ - - recoupling. However, as a complete theoretical account of
(bﬂzﬂl_o OR S,m,u, =0 OR Siimn;u, =0) ping P

(SS'YMX schemes is out of the scope of this paper, we will

This condition may be expressed in terms of the spin an@nly briefly discuss the most import results.
spatial quantum numbers of the cross term and the symmetry A phase inversion supercycle modifies the first order AH

numbers of theSMX scheme?® terms[Eqg. (18)] recoupled by a sequencgin the following
! 13,23
way: >
A2 —0 if (A AND B) (62) ’
e ‘ Hin = 2@t (= D@, ) ) TR (65

For (RN/)MX sequences, the logical expressioksand B The.frequencyof}m\ﬂ is given by Eq.(20); upon the super-
(which may evaluate either to “true” or “false’are given  Cycling procedur&s—SS', itis replaced by its real or imagi-
by nary part, depending on the value @of Generally, it follows
that the resulting first order scaling factor for the recoupled
interaction of the supercycl8S’ is smaller than that of the
min—pav# 52y, sequences, and that the first order AH is natencoded>23
A similar effect occurs in the second order AH: under the

AND assumption thatboth components of a cross term

A Mo ” EZ {(l,my, N5, 1), (I1,my, N, 1)} @renot simultaneously re-

- 21T L2V 5 2, coupled to first orderi.e., if the cross term falls into one of
AND the R/C-categories 2, 3a, and 3b, the second order AH terms

in Eq. (26) of the supercycleSS’ are given by
(Ma+myN—(uo+p) v# 5 Zy 4z —A,xA; 1 AyxaA _A,XA
2 '2’3"2)‘2;2: E((Ulzrznz)\ziz_ (= 1)M2+M1(w|2§12)‘2%}2)*)
OR (/-L1+/-L2)X7E MZ (63) ELUCRSYE EULTSYE ELURSY
A Aq
and IR ¢ (66)
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TABLE Ill. The number of recoupled first and second order dipolar AH terms for various pulse seq¥enéespresent term counfer couplingin the case

of H®), whereas those fdr® are forone pairof dipolar couplings. Note that Ri&s inherently 3Q/ZQ selective, i.e\;o=N,o=0 up to second order,
whereas the other schemes are not. However, their corresponding 3Q phase&bytlese 3Q/ZQ selective. The sequences suppress all other interactions to
first order, excepd couplings. In the case of q? isotropic chemical shifts are also recoupled.

S Class AL [HW]  AHDT AdH®]  ANpH®] M dH®] A HPT A H@)] NE3) 7¢*3 and C/R categories
RIZ | 0 0 0 20 8 0 4 1 2{21,22 21,2 1}

R1§ | 0 0 0 20 0 0 8 2 2{2,-1,2,2,222
2:{(2,2,2,2,2,-1,2, I}

cr;t o 0 0 2 32 40 28 20 5 3b{(2,-1,2,2,(2,-22 1}
30:{(2,-1,2,2,(2 -1,2 1}

30:{2, -1, 2, 2, (2 1,2 1}
30:{2, -1, 2,2, (2, 2, 2, 2}
2:12,1,2,23, 21,2, 1}
R8;L NI 0 2 2 44 56 34 32 8 3b{(2,-2,22,(2 -2 2 I}
30:{2, -2, 2,2, 2, 1,2, 3}
30:{2, -2, 2,2, (2, 2,2, I}
2:{2,-1,2, 2, (2, -2, 2, 1}

(
4:{(2,-2,2,2,(2,-1,2, 1}
3a:{(2,-1,2,2,(2,-1,2, 1}
3a:{(2,1,2,23,(2,-1,2, 1}
3a:{(2,2,2,3,(2,-1,2, 1}

where aﬁﬁjfi is given by Eq.(29). Hence, upon phase {ij Xik;(2,m,,2,+2),(2,m;,2,= 1)},

22

. _ EUCRSYE _ A

inversion supercycling, the frequentz»,llzzzizﬁ2 is replaced by {ij Xik; (2m,,2,+ 1) (22,2 2)}.

its real or imaginary part dependinlgloln1 the value of

+ 4. It may be concluded from E66) thatﬁ.t,ijéjz van- In this section, we explicitly indicate the order of couplings
FUUTSTEY within each cross term. Assume the sequence recouples in

ishes'over the sequenss’ if the following three conditions  tgtg] Njq such terms foreachordered set of dipolar pairs
are simultaneously obeyed) the term belongs to the R/C- jj xik. The numberV;, is always a multiple of 4cf. Table
category 2,(ii) 1,=1I1 and A;=X\y, and (i) po+u1=0.  |iI): from the selection rules follow that for eack3Q term
Therefore, all ZQ terms of category 2 vanish upon phasgij x ik;(2,m,,2,2),(2my,2,1)} (involving the commutator
inversion supercycling. This property is exploited below torTi,, Ti1), simultaneous recoupling occurs of th&Q term
convert 3Q/ZQ-selective sequences into 3Q-selective Onesij x ik;(2,m,2,1),(2m,,2,2)} (involving [TY,, TX]). Also,
The two (S§')MX schemes generated from E@4) and(5)  the two corresponding—3Q terms {ij X ik;(2,—m,,2,
provide identical second order average Hamiltonians under oy (2. -m;,2-1)} and {ij xik;(2,—m;,2,—1),(2,

these conditions. —my,2,—2)} are recoupled. An identical set dfsq cross
terms is recoupled for the paik Xij.
IV. FEATURES OF 3Q RECOUPLING N OI_"lwardS, we focus on theymmetri-zedcross terl:T-]S
o {(ij Xik);(2m,,2,£2),(2m4,2,£1)} that includeshoth ij
A. Average Hamiltonian Xik andikxij contributions. Hence, there afé;, symme-

Here we assume a system ofs coupled spins-1/2 trized terms to consider for each symmetrized pair of cou-
(i,j.k,...) andapply the previously introduced second orderplings. For a system oNg spins, there aréNg(Ns—1)/2
AHT to the case of 3Q recoupling. A 3Q term may appear indistinct dipolar couplings. There afédg(Ns—1)(Ns—2)/2
the second order average Hamiltonian as a cross term b&ymmetrized pair®f couplings (j Xik) that may produce
tween a double-quantum operator associated with one dipat3Q opAerakors, and a total af;oNg(Ns—1)(Ng—2)/2 dis-
lar coupling and another single-quantum operator dif@r-  tinct 5(|2§]2sz,}2 contributions to the second order average

ent coupling, according to the commutators FUCTSYEL
i K1 i " Hamiltonian. For example, in a three-spin system, there are
[T2:2.T201]= —[T221.T2u 3N;q distinct symmetrized terms.
B i 1 . o In the following, we focus on aubsetof J\/’(f3?+ 3_Q
= +5T3¢3:ZS| SSc . (67)  terms recoupled by a given pulse sequefi@nd originating
from one pair (ij Xik). This set is denoted7 ("%
The second order average Hamiltonian of a sequéhiteen  ={7;,7;,...,7u+3}, where each elemer represents the
comprises terms of the form {A,XAq;(l,,my, net contribution from the cross term conforming £6j
No, o), (I, My, N, pq)}, with Xik);(2,m,,2,2),(2my,2,1)} and that obtained after ex-
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changing the order of the sets of quantum numbfg:  with each term given by a sum according to E4d). The
xik);(2,my,2,1),(2m,,2,2);. Expressed in terms of sym- \4iqus elementsZ. only differ in the combinations of
metrized Hamiltonians, the contribution frof amounts to (m,,m,), and each of them comprise four parts: two contri-

butions from the symmetrization procedure, and two origi-

[EIUEY = H s+ A gt (68)  hating from only exchanging the order of the sets of quantum
2m,21 2m,2 numbers while the order of interactionsxik is kept,

{ij Xik;(2,m,,2,2),(2,m;,2,1)} {ik Xij;(2m,,2,2),(2,m;,2,1)},
{ij Xik;(2,my,2,1),(2,m,,2,2)} {ik Xij;(2,my,2,1),(2,m,,2,2)}

The total second order3Q part of the average Hamiltonian treatments of 2QC excitation in a spin pair may be found in
is the sum over all terms withifit*®) and all symmetrized Refs. 55 and 56. The 3QF efficiency is defined as the ampli-

pairs of dipolar couplings: tude obtained after the coherence transfer proc8ss
D) —3QC—S,, and is formally given by
2) _ k) a
o2, 2 1 9 Esq= THSUred PsqUexcSULIUR/THSS, (73

By combining Eq.(68) with the commutator relationships WNe€réPsq is @ 3QC projection superoperattfe, andU ec
Eq. (67) we get represent the propagators used for 3QC excitation and recon-

version, respectively. They are related throudh,..
=R, (Ded UeydRy(Ped T, With ® . being the phase shift ap-
plied to the reconversion pulsgsee Fig. 19)].
Assuming a 3Q HamiltoniafEg. (71)] of threecoupled
{a(lzlmilzl%) a(gmxl";}sﬁ S+3< (70) spins, the 3QI_: effiqiency_ may be calcu!ated analytically for a
single crystallite orientatiofi),,g according to

I R
H(q[]Xlk):ngLr]Xlk)SlJrS;rS‘:r

r

2m 21

In the case of a53™! phase cycle, each symmetrized term Eso Texd
—(ij %

® 2m222) is calculated from Eq(43), whereas for nested 3Q M+

2m121 . _ 3 nz —(|J><|k)
phase-inversion supercycles§’)3*! the calculation pro- =735 |§|:k 21 Texc| COY3Ped -
ceeds through Eq(66). Expressions for the frequencies . (74)

E(T'r' *1k) are given in the supplementary mateffalhe total

30 AH may be calculated from Hence, the optimal efficiency of 3/4 is obtaiftéahen® .,

equals any integer multiple off/3 (including zerg. The
H<2> H@ ot H<2> (71  maximum theoretical 3QF efficiency in an isotropic powder
amounts to~55%. However, not all 3Q-selective pulse se-
with H?), {H(+2:)%Q}T From this follows that it is unneces- quences attain this limit due to other orientational aspects of
sary to epr|C|tIy consider the set 6f3Q terms(i.e.,7("?).  the 3Q Hamiltonian; a detailed discussion is out of the scope
Note, however, that for 3Q/ZQ-selective sequences, it is newf the present paper and will be given elsewhere.
essary to also include the second order ZQ average Hamil-

tonian (H), constructed analogously ¥}, and consider
the total Hamlltoman C. Classification of 3Q recoupling sequences

R = H + H(z) (72) _ A_Imost all ON; and RN, sequences give 3Q-recoupling,
implying that the corresponding (&)3* and (Q\N})3! MQ

phase-cycles effect 3Q/ZQ-selective recoupling. However,
additional criteria must be used in the search for practically

A 3Q-selective Hamiltonian of the form E¢r1) effects feasible 3Q recoupling sequences. Here we examine useful
3QC excitation in multispin systems by conversion of longi- classifications of symmetry-based pulse schemes that assists
tudinal equilibrium magnetizationS,=S;,+ S;,:--) directly  this search and helps predicting the properties of second or-
into 3QC. The excitation dynamics is particularly simple in ader 3Q recoupling sequences. It is important to note that the
three-spin system as it is confined to a subspace spanned task of MQ phase cycling is to suppress the largest possible
the two statesaaary and|B88B3), and may be described within number of undesired MQ order terms in the AH generated by
the fictitious spin-1/2 formalisr>*We omit the details, as the sequenceS, while the scaling factors of its 3Q terms
Ref. 6 outlines the general idea of excitingg 1)QC by the  remain, in general, unchanged. This implies that the proper-
action of an Hamiltonian comprising only=(M)Q operators ties of the resulting MQ phase cycle may be assessed from
on equilibrium magnetization fronM spins, and detailed the properties of the compound sequeisce

B. 3QC excitation
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categories depending on the subset of inequalities in Eqs . o
(38) and(39) that are obeyed by their sets of quantum num-
bers. Here we discuss aulditional classificatiorof the 3Q
recoupling sequenc&s and examine the relationship be-
tween the two classifications. The desired 3Q terms,
{(2m,,2,+22),(2m,,2,=1)} arise in second order AHT as
cross terms between a 2Q term and a 1Q term, each of Whin% -
may be recoupled OR decoupled to first order. We therefore_g sl
dub S as a “class I,” “class 1I” or “class IllI” sequence,
depending on whethareither, one, or botlierms conform-
ing to (2m,,2,+2) and (2m;,2,=1) are recoupled to first
order, respectively.

In the case of class | sequences, we demand that al» *
homonuclear dipolar terméncluding ZQ term$ are sup-
pressed to first order; they correspondficst orde) homo-
nucleardecouplingsequences. Class | sequences have they °**f
most restrictive selection rules, and therefore recouple theS ,,[
smallest number of second order 3Q and ZQ teratispf
which belong to R/C-category 2. There is an important sub-
set of class | sequences that provide 3Q/ZQ-selective recotrG. 3. Numerical simulationfbased on Eq(71)] of *3C 3QF efficiency

pling by thesequenceS itself, i.e., all 1Q and 2Q terms are curves from a thfee'%)i”l system in a POdef Spinning egt2m
. - =10.000 kHz using (RI#3" (left column and (R18)3" (right column).
suppressed up to second order AHT. This applies, for X he calculations employetfC—*°C dipolar couplings of3C,—alanine but

4

ample, to Clg: C?li, C9;, and all Rl% sequences. C|as_5 Il no chemical shift interactionga) and (b) curves obtained from different
sequences providather 1Q or 2Q dipolar recoupling to first  elementsk; two windowless element® =, and R = (7/2)o(3/2), and
order AHT. A recoupled 3Q cross term may belong to one oft windowed oneR,,(8=55°) with pulse fractionf=0.10. Note thata t;e

_ ; tter provides higher scaling factors and thereby faster 3QC excitatipn.
the R/C ca.tegorles 2’. 3.a or 3b, but not to category 4. NOI%and (d), 3QF efficiency curves fromR,,(B) with f=0.10 for different
that there is no restriction on the ZQ AH, as terms of theyngiess. In agreement with Eq77), the largest scaling factor is obtained
form {(I,m,\,u),(I,—m,\,— )} are in general recoupled, for g~55°. (e) and(f), same as irfc) and (d), but for constang=55° and
and they may conform to any R/C-categories 2—4. Class llvariable pulse fractiof.
sequences recouple both 1&pd 2Q dipolar terms to first

order. In the case of (R%)3~! sequences, the recoupled

We have classified the second ordenss termsn five (R14§)3’ (R1837)31

3QF efficiency

3QF effic

C

efficien

terms obey the full selection rule of E(62), and each ele- Referenceor numerically exacsimulations refer to first
ment in both sets of recoupled' 3Q and ZQ terms may CONestimating a numerically exact propagator over the entire
form to any of the R/C-categories 2—4. pulse sequence, followed by propagation of the density op-

Examples of some pulse sequences are listed in Tablgrator. Finally, a 3QF efficiency function, sampled in steps of
lll. The total number of 3Q terms recoupled by a gi&87"* T \as calculated from Eq73). Additionally, the AH gov-
sequence increases as the selection rules relax. Howev%rming the numerically exact propagator was determined.
class | sequences are advantageous because they most effien either its 3Q operatorspr the sum of 3Q and ZQ
ciently suppress 1Q and 2Q terrfwshich interfere with the  gperators were extractedenoted3Q-projectedor 3Q/ZQ-
3Q recoupling. As no dipolar terms are recoupled to first projected exact AH, respectivelyand used in subsequent
order by class | 3Q-phase cycl§8*, they preclude recou- cajculations according to Eq73). This AHT approach in-
pling of second order ZQ terms of R/C-categories 3a, 3b, ang|ydes all 3Q(or, alternatively all 3G-ZQ) contributions to
4: from Sec. Il follows that 3Qselective recoupling is  the average Hamiltonian to infinite order. Also, we per-
achieved by al(S5')3** schemes if5 belongs to class. formed analytical second order AH calculations based on the

Hamiltonian in Eq.(72), assuming perfect behavior of the

1 a2l H
V. DESIGN PRINCIPLES OF 3Q RECOUPLING S83* and (8§')3* MQ phase cycles, i.e., that only 3Q and

SEQUENCES ZQ dip_olar terms contribute in_the formgr_case, and on_Iy 3Q
] ) ] ) terms in the latter. All other dipolar-deriving MQ contribu-
A. Numerical simulation strategies tions, as well as all other interactions, were ignored as they

To assess the performance of 3Q recoupling sequencedfe symmetry forbidden. The validity of this approximation
we performed a variety of numerical simulations. These refefvas confirmed by comparison with numerically exact refer-
to calculated 3QF efficiency curves fro§8* and (SS§')3!  ence calculations.
pulse schemes assuming a three-spin system in a powder, Comparing “exact” simulations with 3Q/ZQ-projected
with dipolar couplings representative f&fC;—alanine and AH calculations shows how accurate AHT models the exci-
chemical shift interactions included when noted. All simula-tation dynamics, while comparing the 3Q/ZQ-projected AH
tions represent powder averages from 538 crystallite orientaand second order analytical simulations indicates the validity
tions selected by the ZCW schetfie®®and were carried out  Of truncating the Magnus expansion at second order, i.e., of
as follows: using the approximatiohin(32+ H(chg.
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B. 3Q scaling factors 0.6 T T T T

oy
. L by L ? e
Since the rate of 3QC excitation depends on the frequen- 8 g d 9 S RTTT
cies E(T'rj k) in turn proportional to the scaling factors -g ’ ¢ LIS LAl DY L gy
Kamy224it IS desirable to find combinations of pulse sequence E
2m,21 ,}:
symmetries and elemeng8 giving the largest possible scal- g

ing factors. The main weakness with the second order recou-
pling approach is that the cross terms are in general small. In
favorable cases, the dimensionless second order scaling fac-

tor k2m,22~0.01, typically an order of magnitude smaller
2m,21

than its first order counterpartsy, »; and kam 21. Further,
in contrast to the first order recoupling case, seeond order
dipolar frequenciesre inversely proportional to the spinning
frequency[Eq. (29)].

Traditionally in first order recoupling applications, the
elementsR=m, and R=(w/2)o(3/2), are employed for
RN’  sequencd§!319202221.2% gnd  Cc=(27),, C 00 ; . .
=(2m)o(27),, andC=(m/2)o(27) (37/2)4 in the case of 0.0 100 200 300
CN? schemeg21>1618.29441qvever, simulations show that Tore (MS)
these elements are generally nonoptimal for second order
recoupling applications, as demonstrated by Figal-33(b). FIG. 4. Compar7isoln of simulatetiC 3QF curves obtained _from t_he MQ-
Instead, we have employedindowedc and R elements, phase cycle (R:IS?3 l(a) and the correspondln% MQ-phase |nverS|or? super-

o . . . cycle (R1§R18;7)3! (b). The elementR,,(50°) was employed withf
providing larger first order dipolar scaling factors than the_o.30 and other parameters as in Fig. 3. The solid lines correspond to
windowless option$>313a property carried over and accen- numerically exact simulations and the others to excitation dynamics from
tuated for the second order scaling factors. Two classes cyfrious approximative average Hamiltoniat&H); the curves labeled

windowed elements, internally compensated to isotropid!”[3Q] were obtained from Eq71), including all recoupled 3Q terms
chemical-shift interactions. aya31:35 listed in Table Ill, whereasi P[3Q+ ZQ] resulted after also including the

recoupled ZQ terms. Curves Iabelgtﬂn-] implies calculations starting by
numerically determining the AHaccurate to infinite order of the Magnus

3QF efficiency

Ru(B)={Bo~ Tw= mo~ Tw= Ba}, (75 expansiol, separating its contributions into various MQ operators, and only
retaining the 3Q or 3@ ZQ parts in the casel[3Q] and H[3Q+ZQ],
Cu(B)={Bo— 1w 9~ 1= (7= B)0}- (76) respectively.

Here 7, denotes a “window” interval, during which the rf
fields are turned off, and timed such that the entire element

Ises in &0
extends overrg=nr, /N. fo ,1pus§m (79)
Equations(31) and (33) show that 3Q scaling factors ~TE =1 p

have parts of the formkop, 20k2m, 21; therefore, optimal sec-
ond order scaling factorg,n, ., result from recoupling se-
2m,21
guences that simultaneously effect large &6l 1Q first or-
der scaling factors2Q and 1Q scaling factors depend on the
pulse flip angleB of the windowed element agop, 22
~singB and K2m121~sin 2B, having optima at8=m/2 and
B=l4, respectively’ This predicts that their optimum From an “ideal” 3Q-recoupling sequence, we demand
product, that(i) it is 3Q selective, i.e., effects an average Hamiltonian
according to Eq(71), with suppression of interfering dipolar
Kom,22~ Kom,22Kam, 21~ SN B SiN 28 (777 termsto first and secqnd order ,_A_\_H(I'l;) it provideg thg high_-
2m, 21 est possible 3Q scaling factor§ii) the recoupling is effi-
cient over a large range of isotropic and anisotropic chemical
is obtained forB= 6,,~54.7°. These arguments are only ap- shifts; (iv) it is robust to rf imperfections; and/) operational
proximate, asc,y, ,, depends also On?mzzz [Eq.(30)], which ~ over alwide range of spinning frequencies. We performed an
2m;21 2m,21 extensive numerical search over potenfiaind R elements
is not directly related to the first order scaling factors. Nev-and (N,n,») symmetry numbers. The sequence found that
ertheless, the optimal angfis in practice found within the best fulfill criteria(i)—(v) above is ng a 3Q/ZQ-selective
range 50% B=<60° as confirmed by the simulations shown class | sequence. It is further stabilized by the incorporation
in Figs. 3¢c)—3(d). The scaling factors of windowed elements of MQ phase cycling and phase inversion supercycles. We
&° also depend on the relative durations between the pulsekerefore focus on evaluating (R)8* and (R1§R18; ) 3*
and windows overrg ,>! reflected by thepulse fraction f by numerical simulations.

As shown by the simulations in Figs(e3 and 3f), the scal-
ing factor is maximized whehis minimized.

C. 3Q phase cycles versus 3Q phase
inversion supercycles
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(R1837)3’ (R1837R18;7)3’ the numerically calculated 3Q/ZQ-projected AH. Further, the
. ; : : latter simulation is indistinguishable from the numerically
§°" - I ‘“%iiffﬁ“:‘:‘;“‘“:“W:-‘ exact reference calculation. These results underline the ex-
S 02| 'E‘:Q‘\ . {1 Ty cellent capabilities of the second order analytical AHT to
5 \’§.A\ P —e—moCs account for the 3QC dynamics.
w, 00} EQ’ . 7 B ——C.S§;B=4.7T - . o
S E%.,_;‘/ a b —4—CS; B=04T The theory predicts tha-t-l(zzcg may be removed by em-
25 s 0 B0 5 m s ploying phase inversion supercycling: this is confirmed by
T‘I(ms) . i the numerical simulations of (R{R18; ’)3'. Figure 4b)
§~ = | ey B Fittag - shows tha’F the analyt_ical cglculations based H)ﬁg the
I O A ] 3Q/ZQ-projected AH simulations, and the numerically exact
& ”\\ i ‘-}\\A /,/ ‘\ e reference calculations all agree very well. Also, identical re-
s " A / ‘\"lne‘ d sults (not shown were obtained fronH{3+H% and the
02—C L - o ; + 3Q-projected numerically determined AH. These simulations
resonance offset (kHz) resonance offset (kHz) show that the (R17§218§ ")3' scheme suppresses all ZQ
. . . . . . 1 terms, but at a price of lowering the theoretical 3QF effi-
g™ e, €] [ * o ciency from ~55% to about 40%. Nevertheless, the 3QF
$ o f/ﬁ}'h\ N ] efficiency offered by the (RE®R18; ’)3* scheme is in prac-
':FE, . / / \‘\ \§ tice higher than for (R193* due to the latter’s undesirable
gm ¥ ‘\‘\/‘ | .\‘\. \ f | | | ZQ contributions.
0.90 095 1.00 1.05 110 090 095 1.00 1.05 110
relative rf amplitude relative rf amplitude 2. Effects of chemical shifts and Rf errors

FIG. 5. Numerically exact simulations at/27=6.000 kHz of the response
to chemical shift interaction&@)—(d) and deviations from the nominal value
of the rf amplitude(e), (f) for (R18;)3* (left column and (R1§R18;7)3!
(right column. Calculations included either onljC—3C dipolar couplings
representative of alanineircles or additionally chemical shifts at 4.7 T
(squares and 9.4 T(triangles. R,(50°) andR,,(60°) with f=0.30 were
used for (R1§)3* and (R18R18;")3%, respectively, givingwS,; nonl27
=93 kHz and 100 kHz(a), (b) 3QF efficiencies as function of the excitation

In realistic scenarios, the dipolar recoupling should be
reasonably robust to interference from chemical shift inter-
actions as well as experimental imperfections, such as insta-
bilities in the amplitudes and phases of the rf field during the
application of the pulse sequences. Although the scheme
(F21%7)31 is the best option found so far for 3Q recoupling,
interval 7. In (c)—(f), the 3QC excitation interval was fixed at,. Fig. 5@ ShOWS_that It_s 3QC dynamlc_s is significantly per-
=3.00 ms(c),(€) and 7= 5.00 ms(d),(f). (c),(d), 3QF efficiencies as func- turbed by chemical shifts over longer time scales. The results
tion of the resonance offset, defined as zero when the rf carrier frequency isorrespond to powder averagéEC 3QF efficiencies pre-
set exactly in between the carboxyl and methi@ sites.(e),(f), 3QF effi-  gjicted from numerically exact simulations for three cases:
ciencies as functhn of the rcat|o between the actd@l nutation frequency one solely dipolar coupling basédrcles and two including
used and the nominal valuey ,om- . . . . . . .

' both isotropic and anisotropic chemical shifts, either at a
magnetic field of 4.7 Tsquarepor 9.4 T(triangles. Despite
that chemical shifts are symmetry-forbidden and further lo-
cally suppressed over each R elem®rthe presence of ZQ

853! schemes are advantageous ow8§'()3! sequences terms of the AH magnifies the effects of residual shift terms
in that they provide larger dipolar scaling factors and mayand may lead to severe susceptibilities of the recoupling to
effect y-encoded 3Q recoupling by careful choice of symme-chemical shift interactions.
try numbers, as will be discussed elsewhere. Their most pro- These problems are partially circumvented by employing
nounced disadvantage is the unavoidable recoupling of Z@hase-inversion supercycling, as shown by the simulated
terms that generally perturb the 3QC excitation dynamic8QF efficiency curve of the corresponding sequence
significantly, resulting in 3QF efficiencies between 20—40 %(R1837R183‘7)3l [Fig. 5(b)]. Nevertheless, the simulations of
in contrast to the theoretical 3QF efficiency ©65%. Fig. 5 indicate that an analysis of 3QF curves must consider

Figure 4 compares various analytical and numericachemical shift interactions explicitly to properly account for
strategies to approximate the Hamiltonian governing thehe observed dynamics, especially if geometric information
3QC excitation in the case of (R@)&Bl and about the spin system is to be extracted. These problems
(R18{R18; )3, Only dipolar couplings were included in arise from the necessity to employ long excitation intervals
the simulations;) couplings do not affect the 3QC dynamics 7.,., requiring extremely high compensation to chemical
in three-spin systems and the effects of chemical shift intershifts. This is also encountered in the determination of long-
actions will be considered in the next section. When onlyrange internuclear distances by current state-of-the-art 2Q
including the 3Q part of the second order average dipolarecoupling sequencé&?20-27-29.46
Hamiltonian, =~55% 3QF efficiency is obtained from Figures %c) and 3d) show the dependence of the rf
(Rl&7)31 [Fig. 4@] in excellent agreement with the results carrier position(related to the robustness of a pulse sequence
from the 3Q-projected numerically determined AH. How- to a spread in isotropic chemical shifts among the gpiois
ever, (R18)3* also recouples a set of ZQ terntsee Table (R18})3! and (R1§R18; ’)3* at 7, fixed to the 3QF maxi-
1), in practice reducing the 3QF efficiency 4630% [Fig. = mum for each sequence. In the case of (Q:BS and assum-
4(a)]: again there is excellent agreement with the results ofng equal isotropic shifts of the spins, fluctuations of the 3QF

1. Effects of zero-quantum terms
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D experiment
::: b Texc (ms)
S
T 0.1 FIG. 7. Numerically simulated and experimentally acquired results of dAla
i at 9.4 T andw,/27m=6.000 kHz, incorporating either the first order 2Q
Q recoupling sequence POST-Ea@r the second order 3Q recoupling scheme
i 0.0 f L . A L A (R18))3" in 3QF experiments. POST-C7 converts 1QC into 3QC with a
1 2 3 4 5 6 theoretical 3QF efficiency 0f6.5% (Ref. 42 (gray line. Experimentally,
T (ms) 4.5% was obtainedcircles. Considerably higher 3QF efficiencies were

provided by applying (R17§31 directly to longitudinal magnetization; 34%
and 13.5% were obtained numericallgquares and experimentally(tri-

FIG. 6. () Numerically simulated antb) experimentally acquiretfC 3QF !
angles, respectively.

efficiency curves from a powder of dAla using (I%’,LB1 and
(R18R18;,7)3* at 4.7 T. Curves with circles are results at/2m
=7.600 kHz from (Rl§)31 [with R,(57°) andf=0.34] whereas open

squares represent (RS, ")3" [R,,(53°), f=0.33]. The triangles are  ¢yryes were sampled at completed Risiits. The proton
results from (Rl@31 [R,(62°), f=0.23] atw,/27=5.000 kHz. All spin . . H .
interactions were included in the simulations. Note the different vertical.nu'[i?ltlon frquenmesonm/.zﬁ. employed c!urlng cross polar-
scales employed ife) and (b). ization and signal acquisition were typically50 kHz and
~90 kHz, respectively. TPPM decouplitigvas used during
the signal acquisition, whereas either conventional high
efficiency curve are observed as the rf carrier is moved awayower CW or amplitude-modulated decouplitescribed in
from resonance, but a significantly enhanced robustness tpe supplementary mateﬁgj was applied throughout the
frequency offsets results from using the (BR&8; )3 se-  13C recoupling sequences. Typically" /27 around~115
quence Fig. 5(d)]. The chemical shift compensation may be kHz and ~215 kHz was used for the 4 mm and 3.2 mm
improved for these schemes by increasing the spinning freprobeheads, respectively. The numerically exact simulations
quency or decreasing the pulse fraction by using more inemployed spin interaction parameters of alanine listed in
tense rf pulses. Ref. 62 and pulse parameters representative for the experi-
Now considering effects from errors in the rf amplitudes, mental values.
Figs. 5e) and §f) indicate a strikingly enhanced robustness
upon phase inversion supercycling to rf amplitude errors. )
The (ng)S1 simulations display a very high susceptibility B. 3QF experiments
especially at the higher field of 9.4 T, whereas the 3QC dy-  Figure 6 shows the 3QF efficiencies obtained from nu-
namics obtained from the scheme (I%E288§7)31 is essen- merically exact simulation&a) and experimentgb) on dAla
tially unperturbed over a range of rf amplitudes within using (R1§)3* at spinning frequencies of 5.000 kHtri-
+10% of the nominal value. In the case of (B8, the angles and 7.600 kHzcircles; at the higher spinning speed
high sensitivity to the rf amplitude setting is likely to result results are also included from the supercycle
from cross terms between chemical shifts and rf amplitud¢R18;R18; ’)3*. The simulation at the lower spinning fre-
errors that are removed by the phase inversion &d&?®  quency predicts an optimum 3QF efficiency of 32.6% at
Texc= 2.4 ms and experimentally we obtained 15.4%. As the
VI. EXPERIMENTAL DEMONSTRATIONS spinning frequency is increased to 7.600 kHz, both the simu-
lations and experiments indicate a shift to a slightly longer
optimal excitation interval, expected from AHT as the sec-
3QF experiments incorporating (R@B1 and ond order dipolar frequencies are inversely proportional to
(R18§R18;7)3l were conducted at 4.7 T and 9.4 T on the spinning frequency. However, a drop in the simulated
Varian/Chemagnetics Infinity spectrometers. The experi3QF efficiency from~=33% to 20% also occur, which may be
ments at 4.7 T were carried out on powders of 99%traced to the corresponding increase of the pulse fraction
[U-13C, 'N] labeled L-alanine and L-tyrosine, using 4 mm from f=0.23 to f=0.34 upon the increase in,: as the
rotors with~15 mg of samples restricted to the center 1/3 ofscaling factors of the 3Q and ZQ average Hamiltonian terms
the rotor volume to reduce rf inhomogeneity. The alanineare dependent on the pulse fraction, their mutual interfer-
sample was additionally isotopicalfH labeled at the €  ences also change. Additionally, the (Fzé,)l:iB1 sequence does
(=90%) and & (=~25%) positions, and is henceforth re- not exhibit enough chemical shift compensation to be unper-
ferred to as “dAla.” The experiments on dAla at 9.4 T were turbed when the pulse fraction increases. As expected, the
carried out with a 3.2 mm probehead. supercycle (R1$18;7)31 effects a slower 3QC buildup
The 3QF efficiencies were obtained by dividing the in-than the (R1§§)31 scheme.
tegrated spectral intensities resulting from the scheme in Fig. Generally, 3QF losses can be attributed to two main
1(f), with that of a conventional CPMAS experiment. All sources: rf inhomogeneity and interferences frém-13C

A. Samples and experimental conditions
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FIG. 8. (a) Molecular structure of L-tyrosingb),(c) Experimental®C spec-
tra from a powder of[U-%C, *>N]—L-tyrosine at 4.7 T andw,/27
=7.300 kHz. (b) The result of a cross-polarization experiment, employing
1.5 ms contact time, 96 signal transients, 10 s recycle delay and 101 kHz
TPPM decouplingRef. 61 during signal acquisition. The asterisks indicate
spinning sidebandgc) 3QF experiment, acquired under identical conditions
as in(b) but also including a 3QF stage using (BB with R,(51°); f
=0.31; v=7.005; 05/27=110KHZ; Te=Tec=1.64ms; /27
=110 kHz and 117 kHz decoupling durif#C pulses and windows, respec-
tively, with 'H rf phases given in the supplementary matefiéf. 50. The
overall 3QF efficiency was 8.2%, and the percentage obtained from&ach
site is given on top of each peak. The spectrurtjrs displayed at 4 times
magnification relative to that ifb).

o, (kHz)

FIG. 10. (@ 2D 3Q-1Q correlation spectrum from U-%C,
I5N]—L-tyrosine at 4.7 T ane,/27=7.200 kHz, using the pulse scheme of
Fig. 9. The experimental parameters are as in Fig. 8, execept

couplings!®'4° Nevertheless, besides from rather signifi- =1.67 ms,r.cc=0.83 ms,w}/2mr=66 kHz during'*C pulses(b) Zoom of
cant experimental 3QF losses, the qualitative features of thie aromatic regioidashed box in@)].
experimental curves match well those of the simulations, es-

pecially when considering the comparatively long excitationapoyt 309 loss compared to the experiment on the restricted
intervals involved. The main qualitative discrepancy is i”'sample volume.

deed occurring at larger values of,., most likely due to Figure 7 depicts the corresponding experiments and
interferences from rf inhomogeneity. We also carried outgjmylations of (R193! at By=94T and /27

3QF experiments on a full rotor of dAla and only obtained _ g 6o kHz. As this probehead allowed using high#e

11% 3QF efficiency atw,/2=5.000 kHz, amounting 10 nytation frequencies, the pulse fraction employed at the
higher spinning frequency was equal to that employed at
w,/27=5.000 kHz and 4.7 T. A similar 3QF efficiency of

13.5% was observed, indicating that no significant distur-
I '[ cp_|Decoupling| - TPPM  |Decoupling] — TPPM bances occurred from the increased chemical shift interac-
tions at 9.4 T. Figure 7 also shows the results of a previously
" ¢ — Troc— ¢ introduced 3QC excitation technidiferelying on (first or-
S (R18)3' ! | (R18))3' I Z den 2Q recoupling by POST-C7Comparing its experimen-
tal 3QF efficiency of 4.5% with that obtained by (%181

rec underlines the superior capabilities of 3Q recoupling in de-
FIG. 9. Pulse scheme used for 3Q—1Q homonuclear correlation spectrodvering efficient 3QC excitation in rotating solids; despite
copy incorporating (R193! for 3QC excitation and reconversion. During losses, the experimental results of 13.5% offered by
t;, 3QC evolve under chemical shift interactions, prior to their conversion(R18§)3l is twice that theoretically attainable by a 2Q re-
into 1QC and the subsequent signal acquisition dutingAfter 2D Fourier ecsoupling sequence.

transformation a spectrum is obtained that correlates the 3QC frequenci .
(alongw;) with the corresponding 1QC frequencigdong w,) of each'C The results of Fig. 8 demonstrate that (%)]331 may be

isotropic chemical shift. successfully applied also to larger multiple-spin systems, in
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this case{ U-°C, **N]-labeled L-tyrosine. A total of 8.2% ciencies are offered experimentally by the new approach
3QF efficiency was obtained at 4.7 T ané,/2w compared to the previously best broadband techrf§ue,
=7.300 kHz. The 3QF efficiency of the aromatic carbonscomparable spectral S/N ratios are offered within an order of
amounts overall to more than 10%, while that of the alaningnagnitude shorter experimental time. Alternatively, it allows
segment of the molecule is less than 4%. The intensities oipplication to larger molecular systems, although the 3QF
the latter could not be significantly enhanced by using longe€fficiency delivered is still not high enough for large biomol-
excitation intervals, which we attribute to strong interfer- ecules. Nevertheless, the new approach may directly replace
ences from the surrounding protons: as opposed to dAla, th&@at of Ref. 42 as building block in experiments for estimat-
entire*H dipolar network is intact in this sample. Additional ing molecular torsion angl€s, further combined with 2D
discussion about heteronuclear decoupling in these exper¢orrelation experiments for the measurement of multiple tor-

ments are provided in the supplementary matéfial. sion angles as previously demonstrated by analogous 2Q
experiment$® Other possibilities include tests for spin
C. Homonuclear 3Q—1Q correlation spectroscopy counting® and spectral editing by 3GF.

) , ) . . The main inherent limitation with the second order based
A detailed discussion about various 2D correlation Strat'dipolar recoupling approach is the small sizes of the re-

egies employing 3QC and their structural information €on-qqhied terms, making the recoupling susceptible to other
tent WI|| be given elsewhere. Here we only summarize thﬁnterfering interactions such as chemical shifts. This is rem-
most important features of the 3Q—1Q correlation experiyqiaq partially by using windowed pulse elements that sig-
ment. _ _nificantly enhances the second order dipolar scaling factors,

A pulse scheme for 3Q-1Q correlation SpectrosCopy i$yqyided that sufficiently strong rf pulses may be employed.

depicted in Fig. 9. After a cross-polarization interval, longi- The theoretical aspects of this work extends previous
tudinal magnetization is obtained bym2 pulse. Next, 3QC  {.catments of symmetry-based pulse sequéhckss-2023.34

is created by the (REg3* sequence of total duration,c,  py (i) allowing a quick assessment of which terms dee
corresponding to an arbitrary integer of completed R18 coupledto second order AHT for MQ phases cycles and their

blocks. Then follows an intervalt;” during which each  .,mpination with phase inversion supercycles éifdquan-

3QC evolves under the sum of chemical shift interactiongjiative determination of theemaining recoupledsecond or-
within each spin triplet. At the end of the interval, the 3QC yer terms. This may provide further insight into compensa-
has acquired a phase factor involving the sum of iSolropiGjon mechanisms to interfering interactions in symmetry-
chemical shifts, exfity(w™+ o+ w°)} (disregarding CSA  pased recoupling and decoupling schemes. Further,
contributions. This frequency is generally unique to each gyiensions to heteronuclear recoupling experiments by em-
3QC an'd corresponds to the coordinate in the 2D 3Q'—1Q ploying MQ phase cycles on dual rf chanfiélmay be en-
correlation spectrum. Next, th_e 3_QC are reconverted into 0b\7isaged, as well as the engineering of higher-order MQ se-
servablel t.rans.ve.rse magnetlgatlon by another sequence Rltive homonuclear recoupling sequences. The symmetry-
(R18)3" irradiation of duration e (not necessarily the pased framework may also find applications outside the
same ase,J followed by a2 pulse. This block of pulses is jnmediate scope of conventional recoupling and decoupling
phase cycled tq sole'ly allow the coheren'ce orde:'r transfgf, MAS NMR, for example, in zero field NMR at high fiei#
+3——1.The signal is subsequently acquired duririg. and in quantum information processing through solid state
Figure 10 shows the resulting 3Q—1¥C correlation NMR.65
H 1 15 H H '

spectrum obtained from _L[—3C, N]-L-tyrosine. As this Further work is required to circumvent the problems
molecule[Fig. 8(a)] comprise seven inequivaleliC nuclei,  \yith MQF losses in second order based recoupling experi-
one expects in total seven different groups of 3QC signals ifnents. However, this is motivated by the superior efficien-
its 2D spectrum, if the 3QC excited only involves nuclei not ;jag they promise compared to recoupling techniques based

separated by more than two bonds. These predictions ags, first order average Hamiltonians for high order MQC ex-
confirmed from the 2D spectrum. Note that for a given 3QCjtation.

frequency inw,, one peak appears in th& dimension for
each distinct spin, unless there are degeneracies in the chemi-

cal shifts, as in the case off€C*—C*". The only peculiar ACKNOWLEDGMENTS

feature of the 2D spectrum of tyrosine is th&-af—C” This work was supported by the Swedish Research
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VII. CONCLUSIONS providing the alanine sample.

By means of an extended second order AHT treatment of
symmetry-based pulse sequences, we have designed 3Q feZPENDIX: SECOND ORDER SCALING FACTORS
coupling schemes generating trilinear dipolar average HamilF OR ARBITRARY PULSE ELEMENTS
tonians and applied them in the context'd€ 3QC excita- Here the calculation of the factdt,,, , in Eq. (37) is
tion in rotating solids. We obtained 15.4% 3QF efficiency in Moo
a powder of partially deuteratédC, L-alanine, and 8.2% in  presented for an arbitrary pulse elem&htanalogous to that
[U-23C]-L-tyrosine. As about 2—-3 times higher 3QF effi- of the first order case in Ref. 12. Assume that the eleriént
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is built of a sequence @it rectangular pulses with flip angles

and phasesg())%,(gl)%...,(gm_l) by and rf nutation fre-

ingn0 1
quenciesw,,, @nus - - - @ nut

given by 79,71,...,7q—1, Where £,=owh,7,. Define the
pulse Euler angles as follows:

ko v
0p=(Ap.Bp.Gp)=| dp— 5.~ &p.—dpt 5| (AD)

The factorK

MaA oty
myAgpg

in Eq. (37) may be written as the sum of . .
The case of smooth rf modulations may be handled by taking

A. Brinkmann and M. Edén

A2

1. The durations of the pulses are and

0@y _pt2
Mzﬂé(Qo ) Dﬂzﬂé(ﬂo), (A8)
@)=Y ™ (@R )D™ Q) (A9)
papy P uy papy P PR
Mo ROy M
Dului(QO ) DMlui(QO)' (A10)

two parts resulting from the time integration over rectangulathe limit of large91. Note that this calculation applies gen-

and triangular integration aredsimilar to those shown in
Fig. 2:

] A
MpXoup ™ TN Myhopy MaAphy * (A2)
LELSVE) myAgpg myA g

The rectangular and triangular parts are given by

N-1 - p'—1 -
U P R () PR(P
Ky = 2 - Kb, 20 — KR (A3)
N ot MoNppy &= myNqpq?
ma, p'=1 TEF22p=0 Te AT
N-1 r 2
A _ p| =(p)
Ko, = 2 (T—) K i, (A4)
mpgu, PO \7E WLST]

and the calculation oK), is outlined in Ref. 12. The con-
tributionsRSnF;)xz,i2 from the individual pulses are

myNgpq
%@ _©
MaAata ™ TNMyNppy 1
miNgpg Mo\ g

~ (1) .
Kingngi, = €XRI (Mp My 70} 2

MmN qaq Hosktg

(1)

ryeen
MaAatty ! ’

N2 =(2)
D,uz,ué(ﬂo )
N = (1)

X
D#l#i(ﬂo K (A5)
MmN g

p—1

|(m2+ ml)wr E Tpr
p'=0

~(p)
sz)‘zﬁ‘z =ex

LTSN

No =(2) Nq = (1) (p)
X D“ (Q D" ,(Q.7)K -
Mrz ’ /1-2#2( p—l) //-1:“1( P l) mz}\ZM?
21 Mq MyNgptq

The termsK(p)

MaA oty
My gug

(p) :
Kmpz)\z,u.zz exp[_ I (1““2+ Iul)Ap}

MmN g g
7 t! t’ t
x> 2| Pdt | dtd? [ B,—|d" |B,—
p 0 0 o0 pr 410 pr

(AB)

are given by

X expliw(myt’+m;yt)}.
The Wigner element®™? ,(0®) andD* ,(0Y) are de-
mapy P wikgs P
fined through the iterations

A2

n I(Qp);

Hota

(A7)

Moky

A ~ A =
D2 (=2 D, (057D
K2

erally to any element® of pulses and windows, applied
either once, or implemented periodically within the
symmetry-based framework forNg or CN;, schemes.
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