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1 The SR42
1 Pulse Sequence

The SR42
1 pulse sequence supercycle is constructed from the basic rotor-synchronized se-

quence R2
1 employing a single 1800 pulse as basic element, where the notation βφ denotes

an rf pulse of flip angle β and phase φ (both in degrees):

R42
1 = 18090 180−90 18090 180−90 (S1)

= 18090 180270 18090 180270, (S2)

The basic R42
1 sequence spans exactly one rotational period. The general properties of

symmetry based recoupling sequences denoted RNν
n and possible supercycling schemes

have been discussed in great detail in Refs. 1–8. The SR42
1 supercycle is constructed in

two steps from the basic sequence R42
1: (i) An inversion supercycle is formed by adding a

consecutive block

R4−2
1 = 180−90 18090 180−90 18090 (S3)

= 180270 18090 180270 18090. (S4)

(ii) The combined block R42
1R4−2

1 is subjected to a 3 step “multiple-quantum” (MQ) phase

cycle, in which the overall rf phase of consecutive pulse sequence blocks is incremented in
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steps of 120◦.3,8–11 The nested supercycle (R42
1R4−2

1 )31 is denoted SR42
1 and is given by

SR42
1 = (R42

1R4−2
1 )31 (S5)

=
[
R42

1R4−2
1

]
0

[
R42

1R4−2
1

]
120

[
R42

1R4−2
1

]
240

(S6)

= 18090 180270 18090 180270 180270 18090 180270 18090

180210 18030 180210 18030 18030 180210 18030 180210

180330 180150 180330 180150 180150 180330 180150 180330,

(S7)

where a single 1800 pulse is assumed as basic element. As a consequence the SR42
1 sequence

requires the rf field strength to be twice the spinning frequency. Other possible choices for

the basic element, especially for application at lower spinning frequencies, are composite

pulses12 (e. g. 901802700) or windowed elements.13

Consider a spin system consisting of a single half-integer quadrupolar S-spin and sev-

eral spin-1/2 I-spins. The SR42
1 sequence is solely applied to the I-spins. It achieves

longitudinal two-spin-order (IzSz) recoupling of the IS heteronuclear dipolar couplings

while decoupling the homonuclear I-spin dipolar interactions. In detail, the sequence

SR42
1 has the same properties as the heteronuclear longitudinal two-spin-order recoupling

sequences (R3215
8 R32−15

8 )21 and (R3215
8 R32−15

8 )31, recently presented,14 namely: (i) Het-

eronuclear dipolar coupling terms proportional to IzSz are recoupled in the first order

average Hamiltonian. (ii) The recoupled terms of the IS heteronuclear dipolar inter-

actions commute for different spin pairs. Hence dipolar truncation is absent. (iii) I-spin

CSA terms proportional to Iz are recoupled. These terms commute with the heteronuclear

dipolar coupling terms. As a consequence the oscillations of the S-spin signal due to the

heteronuclear dipolar couplings are not sensitive to the I-spin chemical shift anisotropies.

(iv) The I-spin homonuclear isotropic J-couplings are present under any RNν
n sequence

on the I-spins. However, in the cases considered here these couplings are very small and

have no influence on the S-spin evolution. (v) All terms of the homonuclear dipolar cou-

plings between I-spins, isotropic chemical shifts of the I-spins and isotropic heteronuclear

J-couplings between S- and I-spins are suppressed in the first-order average Hamiltonian.
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Figure S1: Normalized simulated 17O signal amplitudes for the pulse sequence in Figure 2b
employing different heteronuclear recoupling sequences of duration τ in an external field of
18.1 T and at a spinning frequency of 50 kHz in 17Oη-L-tyrosine·HCl, where the 17Oη–1Hη

and 17Oη · · ·1H′′ dipolar coupling constants were set to 14200 and 3100 Hz, respectively.
In addition, the numerical simulations took the spin interactions given in section 2.3 into
account. (a) Employing a 1Hη-selective Gaussian pulse (dipolar oscillations due to the
17Oη–1Hη dipolar coupling): Solid line: Numerical three-spin (17Oη, 1Hη, 1H′′) simulations
for the sequence SR42

1. Dashed line: Numerical three-spin simulations for the sequence
(R3215

8 R32−15
8 )31. Dotted line: Two-spin (17Oη, 1Hη) average Hamiltonian calculations.14

(b) Employing a 1H”-selective Gaussian pulse (dipolar oscillations due to the 17Oη · · ·1H′′

dipolar coupling): Solid line: Numerical three-spin simulations for the sequence SR42
1.

Dashed line: Numerical three-spin simulations for the sequence (R3215
8 R32−15

8 )31. Dotted
line: Two-spin (17Oη, 1H′′) average Hamiltonian calculations.14

It should be noted that the plain sequence R42
1 (without supercycling) does not possess

the same properties as the plain sequence R3215
8 . As the phase shift between consecutive

180◦ pulses in the SR42
1 sequence is given by 180◦, adjacent pairs of 180◦ pulses combine

to achieve an internal compensation for rf field errors.4

Figure S1 shows the results of numerically exact spin simulations to demonstrate the

essentially improved performance of the SR42
1 sequence compared to the (R3215

8 R32−15
8 )31

sequence. For the short-range 17Oη–1Hη interbond distance (Figure S1a) numerical three-

spin simulations for both recoupling sequences agree very well with average Hamiltonian

two-spin calculations that solely take the 17Oη–1Hη heteronuclear dipolar coupling into ac-

count. However, for the medium-range 17Oη · · ·1H′′ intermolecular distance (Figure S1b)

only the numerical simulations for the SR42
1 sequence agree very well with average Hamil-

tonian calculations solely considering the 17Oη · · ·1H′′ dipolar coupling, whereas the nu-

merical simulations for the (R3215
8 R32−15

8 )31 sequence shows relatively large deviations.
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2 Details of the Experiments and Simulations

2.1 Sample

[35–40 %-17Oη]-L-tyrosine was purchased from Cambridge Isotope Laboratories and re-

crystallized from a 9 M solution of HCl in water by slow evaporation of the solvent at

room temperature.

2.2 Solid-state NMR

All experiments were performed at static magnetic fields of 18.8 T and a spinning fre-

quency of 50 kHz using a Varian Infinity+ console and a homebuilt double-resonance

MAS probehead utilizing a Samoson 1.8 mm stator.15 Zirconia rotors with a restricted

sample volume of 5.3 µl were used for all experiments. Processing of the NMR data was

done using the matNMR16 processing package.

For all experiments a convergent DFS was used with starting and finishing frequencies

of 1.4 MHz and 100 kHz, respectively. The 17O rf field strength and sweep duration were

set to 17 kHz and 2 ms respectively. The duration of the 17O central-transition selective

90◦ and 180◦ pulses were given by 11 µs and 20 µs (one rotational period), respectively.

The 1H rf field strength during the SR42
1 heteronuclear recoupling sequence was set to

100 kHz. To verify the exact setting of the rf field strength a complete proton two-

dimensional (2D) nutation spectrum was acquired. In the case of the non-proton-selective

experiment (Figure 2a) low-power continuous-wave (CW) proton decoupling with a 1H

rf field strength of about 5 kHz was applied during the time interval T − τ and signal

acquisition. In case of the proton-selective experiment (Figure 2b), CW proton decoupling

with a rf field strength of about 5 kHz was applied during signal acquisition. The duration

of the Gaussian pulse in the proton-selective experiment was set to 51 rotational periods

(1.02 ms) and the frequency offset and rf amplitude was optimized to selectively invert

1Hη and 1H′′ longitudinal magnetization respectively, as shown in Figures 3c and 3e.

In the case of the non-proton-selective experiment (pulse scheme Figure 2a) the fol-
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lowing phase-cycling scheme was employed for the rf phases Φ90 and Φ180 of the 17O

central-transition 90◦ and 180◦ pulses, respectively, and the post-digitization phase shift

Φdig:17

Φ90 = (0◦)4, (90◦)4, (180◦)4, (270◦)4 (S8)

Φ180 = (0◦, 90◦, 180◦, 270◦)4 (S9)

Φdig = (0◦, 180◦)2, (270◦, 90◦)2, (180◦, 0◦)2, (90◦, 270◦)2, (S10)

where the superscripts indicate the number of repetitions of the bracketed phase shifts.

In the case of the proton-selective experiment (pulse scheme Figure 2b), in addition,

the phase-cycling included the rf phase ΦG of the Gaussian pulse on the protons:

Φ90 =
[
(0◦)4, (90◦)4, (180◦)4, (270◦)4

]4 (S11)

Φ180 =
[
(0◦, 90◦, 180◦, 270◦)4

]4 (S12)

ΦG = (0◦)16, (90◦)16, (180◦)16, (270◦)16 (S13)

Φdig =
[
(0◦, 180◦)2, (270◦, 90◦)2, (180◦, 0◦)2, (90◦, 270◦)2

]4
. (S14)

2.3 Numerical Simulations

Numerically exact spin simulations were performed using SIMPSON.18 Let ΩMR = {αMR,

βMR, γMR} denote the Euler angles describing the relative orientation of the molecular

axis system and the rotor-fixed frame. For the two-spin simulations powder averaging was

accomplished using a set of 986 pairs of {αMR, βMR} angles chosen according to the ZCW

scheme19 together with stepping the γMR angle equally from 0◦ to 360◦ in 31 steps. For

the three-spin simulations 376 pairs of {αMR, βMR} ZCW angles together with 19 steps in

the γMR angle were used. All spin interactions of the nuclei of interest listed in Table S1

were included in the simulations.14 The first- and second-order quadrupolar coupling was

included in the simulations, whereas the second-order cross term between the quadrupolar

coupling and the heteronuclear 17O–1H dipolar coupling was ignored, since the size of this
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Quadrupole Coupling

Nucleus CQ [MHz] ηQ ΩQ
PM [◦]a

17Oη 8.52b 0.74b {−99, 45, 89}c

Chemical Shifts

Nucleus δiso [ppm] δaniso [ppm] η ΩCSA
PM [◦]a

17Oη 43.7d 46.5c 0.70c {−96, 28,−80}c
1Hη 0.0d −23.9c 0.43c {−72, 169,−77}c
1H′′ 2.5d −18.6c 0.35c {71, 120, 55}c

a The Euler angles ΩΛ
PM give the relative orientation of the interaction tensor Λ and a molecule

fixed frame with its z-axis along the Oη–Hη internuclear vector and its x-axis perpendicular to the
Cζ–Oη–Hη plane.14

b Experimental results.14

c Results of DFT calculations.14

d Set, so that the 17Oη and 1Hη spectral peaks are on-resonance with the rf carrier frequency.

Table S1: Relevant spin interactions in 17Oη-L-tyrosine·HCl used in the numerically exact
spin simulations. The 17Oη–1Hη and 17Oη · · ·1H′′ dipolar coupling constants were varied
during the simulations, where the Oη–Hη and O′′–H′′ bond directions were taken from
the neutron-diffraction-determined structure20 and the 1Hη · · ·1H′′ dipolar coupling was
adjusted accordingly in all cases.14

term is only 1–1.5 % of the size of the 17O–1H heteronuclear dipolar coupling.14

2.4 Data analysis

The experimental data points shown in Figures 3b, 3d, 3f, and S2 correspond to the

normalized experimental integrals of the 17Oη spectral peak (complete second-order line-

shape) plotted as a function of the duration τ of the recoupling pulse sequence. The peak

integrals were in all cases normalized to the peak integral at τ = 0.

2.4.1 Non-proton-selective experiments

Figure 3b shows the results obtained with the non-proton-selective scheme in Figure 2a.

The solid line corresponds to the best-fit result of numerically exact two-spin (17Oη, 1Hη)

simulations. The numerically simulated 17O signal amplitudes are denoted a(bHηOη , τ),
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where bHηOη is the 17Oη–1Hη heteronuclear dipolar coupling constant. All relevant spin-

interactions were taken into account and bHηOη/2π was varied in steps of 10 Hz from

13500 Hz to 16500 Hz. The amplitudes a(bHηOη , τ) were multiplied by an exponential

damping factor f exp{−τ/TR} to take relaxation into account. In addition, an empirical

exponentially damped constant offset (1− f) exp{−τ/Tqe} was added to satisfactorily fit

the calculated curves to the experimental signal intensities. This offset is attributed to

the complex relaxation pathways in the proton network that leads to a decaying quasi-

equilibrium state.21,22 The resulting fitting function for the experimental 17O signal am-

plitudes is given by:

s(bHηOη , τ) = a(bHηOη , τ)f exp{−τ/TR}+ (1− f) exp{−τ/Tqe} (S15)

We obtained the 95 % confidence interval for the heteronuclear dipolar coupling by calcu-

lating the mean squared deviation S between the experimental and simulated amplitudes

for the set of heteronuclear dipolar couplings bHηOη , where for each value of bHηOη the other

3 fitting parameters (f, TR, Teq) were optimized as to minimize S. The 95% confidence in-

terval is determined by the set of dipolar couplings for which S ≤ Smin{1+F 0.05
1,n−4/(n−4)},

where Smin is the mean squared deviation between experimental and simulated amplitudes

minimized by optimizing all 4 fitting parameters and n is the number of experimental

points. Fα(p1, p2) is the upper α probability point of the F distribution with p1 and p2

degrees of freedom.23

The best fit results for the heteronuclear dipolar 17Oη–1Hη coupling constants bOηHη ,

the factor f and the relaxation time constants TR and Tqe are given by (bOηHη/2π, f, TR, Tqe) =

(14770 ± 260 Hz, 0.99, 2.12 ms, 45.2 ms). The 17Oη–1Hη heteronuclear dipolar coupling

constant corresponds to an NMR distance of rNMR = 103.3 (+0.6,−0.5) pm. This is

about 4.4 % larger than the distance of rn-diff = 98.9 pm estimated by neutron diffraction,

which can be attributed to the librational motion of the Oη–Hη bond vector. It should be

noted that the influence of the 17Oη · · ·1H′′ heteronuclear dipolar coupling (medium-range

intermolecular distance) on the determination of the 17Oη–1Hη heteronuclear dipolar cou-
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pling (short-range interbond distance) is very small, as has been discussed before in Ref.

14 and which is confirmed by the proton-selective experiments.

The dotted lines in Figure 3b are the result of an average Hamiltonian calculation

according to Eq. (15) in Ref. 14 considering solely the heteronuclear dipolar coupling and

using the same fitting parameters as for the numerically exact simulations. The agreement

with the numerically exact simulations is very good, demonstrating the robustness of the

SR42
1 recoupling sequences with respect to 17O quadrupolar couplings and both 17O and

1H chemical shift anisotropies. Therefore the analysis of the experimental curves may for

simplicity be done just using average Hamiltonian calculations, which are much faster than

numerically exact simulations.

2.4.2 Proton-selective experiments

Figures 3d (S2a) and 3f (S2c) show the experimental heteronuclear modulation curves

obtained with the proton-selective pulse scheme in Figure 2b, employing Gaussian 180◦

pulses selective to the 1Hη and 1H′′ sites, respectively. In addition, Figures S2b and S2d

show the results of control experiments where the Gaussian pulse on the protons was

left out. In this case all 17O–1H heteronuclear dipolar couplings are refocused during the

second evolution time under the SR42
1 sequence.

The solid lines in Figure 3d (S2a) and Figure 3f (S2c) correspond to the best-fit

results of numerically exact two-spin (17Oη, 1Hη) and (17Oη, 1H′′) simulations respec-

tively. The numerically simulated 17O signal amplitudes are denoted asel(bIS , τ), where

(I, S) = {(H′′,Oη), (Hη,Oη)} is the spin-pair of interest. In the case of asel(bHηOη , τ)

the heteronuclear dipolar coupling constant bHηOη/2π was varied in steps of 10 Hz from

13500 Hz to 16500 Hz, whereas in the case of asel(bH′′Oη , τ) the heteronuclear dipolar cou-

pling constant bH′′Oη/2π was varied in steps of 10 Hz from 2000 Hz to 6000 Hz. The fitting
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Figure S2: Symbols: Normalized experimental integrals of the 17Oη spectral peak as a
function of the duration τ of the SR42

1 recoupling sequence using the pulse scheme in Figure
2b: (a) employing a 1Hη-selective Gaussian pulse, (b) control experiment to (a) without
Gaussian pulse, (c) employing a 1H”-selective Gaussian pulse, and (d) control experiment
to (c) without Gaussian pulse. Solid lines: Best-fit numerical two-spin simulations. Dashed
lines: Best-fit numerical three-spin simulations.

functions of the experimental 17O signals amplitudes are given by:

ssel(bIS , τ) = asel(bIS , τ)f exp{−τ/TR}+ (1− f) exp{−τ/Tqe} (S16)

ssel
0 (bIS , τ) = f exp{−τ/TR}+ (1− f) exp{−τ/Tqe}, (S17)

where ssel and sssel
0 are the fitting functions for the experimental heteronuclear modulation

curve and the control experiment, respectively. Both the experimental modulation curve

and the control experiment were fitted simultaneously in each case. The 95 % confidence

intervals for the heteronuclear dipolar couplings were determined as has been described in

section 2.4.1 before. In case of the 1Hη-selective experiment, the experimental results in

Figure 3d (S2a) and Figure S2b were fitted simultaneously. The best fit results are given

by (bOηHη/2π, f, TR, Tqe) = (14270 [+580,−550] Hz, 0.78, 1.01 ms, 1.10 ms). The 17Oη–
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1Hη heteronuclear dipolar coupling constant corresponds to an NMR distance of rNMR =

104.5 ± 1.4 pm, which is in agreement within the error margins with the results of the

non-proton-selective experiment. In case of the 1H′′-selective experiment, the experimental

results in Figure 3f (S2c) and Figure S2d were fitted simultaneously. The best fit results

are given by (bOηH′′/2π, f, TR, Tqe) = (3130 [+660,−550] Hz, 0.79, 0.88 ms, 0.78 ms). The

17Oη–1H′′ heteronuclear dipolar coupling constant corresponds to an NMR distance of

dNMR = 173 (+12,−11) pm, which is about 8% larger than the distance of dn-diff =

160.9 pm estimated by neutron diffraction. The accuracy is satisfactory considering the

difficulty of measuring these type of distances by NMR.

Numerical simulations in two- and three-spin systems show that the effect of an im-

perfect inversion pulse on the protons is to add an offset to the dipolar modulation curves,

where the frequency of the dipolar modulation is not effected. Therefore this effect is

included in the offset parameter f of the fitting functions.

The dotted lines in Figure 3d and 3f are the result of two-spin average Hamiltonian

calculation according to Eq. (15) in Ref. 14 considering solely the relevant heteronuclear

dipolar coupling and using the same fitting parameters as for the numerical two-spin

simulations. The agreement with the numerically exact simulations is again very good as

has been seen before in the case of the non-proton-selective experiments.

The dashed lines in Figure 3d (S2a) and Figure 3f (S2c) correspond to the best-fit re-

sults of numerically exact three-spin (17Oη, 1Hη, 1H′′) simulations. The numerically sim-

ulated 17O signal amplitudes are denoted asel
Hη(bOηHη , bOηH′′ , τ) and asel

H′′(bOηHη , bOηH′′ , τ)

for the experiments employing Gaussian 180◦ pulses selective to the 1Hη and 1H′′ sites,

respectively. In addition we calculated the the signal amplitudes asel
0 (bOηHη , bOηH′′ , τ) for

the control experiment leaving out the Gaussian pulse on the protons. These numerical

simulations show no modulation of the signal amplitudes as expected. The pair of het-

eronuclear dipolar coupling constants (bOηHη , bOηH′′) was varied on a two-dimensional grid,

were bOηHη was incremented in steps of 100 Hz from 2000 Hz to 5000 Hz and bOηH′′ was

incremented in steps of 100 Hz from 13000 Hz to 16000 Hz. The fitting functions of the
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experimental 17O signals amplitudes are given by:

ssel
Hη(bOηHη , bOηH′′ , τ) = asel

Hη(bOηHη , bOηH′′ , τ)f exp{−τ/TR}+ (1− f) exp{−τ/Tqe} (S18)

ssel
H′′(bOηHη , bOηH′′ , τ) = asel

H′′(bOηHη , bOηH′′ , τ)f exp{−τ/TR}+ (1− f) exp{−τ/Tqe} (S19)

ssel
0 (bOηHη , bOηH′′ , τ) = asel

0 (bOηHη , bOηH′′ , τ)f exp{−τ/TR}+ (1− f) exp{−τ/Tqe} (S20)

where ssel
Hη and ssel

H′′ are the fitting functions for the experimental heteronuclear modula-

tions curves and ssel
0 is the fitting functions for the control experiments. All experimental

results shown in Figure 3d (S2a), Figure S2b, Figure 3f (S2c) and Figure S2d were fit-

ted simultaneously. The best fit results are given by (bOηHη/2π, bOηH′′/2π, f, TR, Tqe) =

(14200 Hz, 3100 Hz, 0.77, 0.98 ms, 0.84 ms). It should be noted that in this case the same

relaxation constants were used for both the (Oη,Hη) and (Oη,H′′) modulation curves.

This is certainly a strong simplification and explains that the fits for the three-spin sim-

ulations are slightly worse than for the two-spin simulations. However the result for the

heteronuclear dipolar coupling constants is in good agreement between two- and three-spin

simulations.
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