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Abstract
Understanding the dynamics of electron or nuclear spins during a magnetic reso-

nance experiment requires to solve the Schr€odinger equation for the spin system

considering all contributions to the Hamiltonian from interactions of the spins

with each other and their surroundings. In general, this is a difficult task as these

interaction terms can be both time-dependent and might not commute with each

other. A powerful tool to analytically approximate the time evolution is average

Hamiltonian theory, in which a time-independent effective Hamiltonian is taking

the place of the time-dependent Hamiltonian. The effective Hamiltonian is sub-

jected to the Magnus expansion, allowing to calculate the effective Hamiltonian

to a certain order. The goal of this paper is to introduce average Hamiltonian

theory in a rigorous but educational manner. The application to two composite

pulses in NMR spectroscopy is used to demonstrate important aspects of average

Hamiltonian theory.
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1 | INTRODUCTION

The dynamics of electron and nuclear spins is utilized in
the wide area of magnetic resonance-based techniques,
including spectroscopy, imaging and microscopy, such as
electron paramagnetic resonance (EPR),1 nuclear magnetic
resonance (NMR),2,3 nuclear quadrupole resonance (NQR)4

spectroscopy, magnetic resonance imaging (MRI)5, and
magnetic resonance force microscopy (MRFM).6 However,
the dynamics of the electron and nuclear spins is governed
by their complex interactions with other spins and with
their surroundings, including external magnetic fields, both
static and oscillating. Furthermore, predicting the dynamics
in most but the simplest cases, requires the use of quantum
mechanics, specifically solving the Schr€odinger equation for
the spin system considering all the contributions of the
internal and external interactions to the Hamiltonian. This
can be a difficult task especially if the Hamiltonian is time-
dependent and the spin interaction terms do not commute,
a case in which one needs to either resort to numerical

simulations or analytically approximate the spin dynamics to
a certain degree or order. The goal of this educational paper
is to introduce in a comprehensive and rigorous manner one
such powerful analytical approach, average Hamiltonian
theory,2,7-10 in which the time-dependent Hamiltonian of the
spin system is replaced with a time-independent effective
Hamiltonian over a certain time interval, which on its part
can be analytically approximated through a series expansion,
called Magnus expansion11 to a certain order in the original
Hamiltonian. The beauty of average Hamiltonian theory is
that if truncated at any order of the Magnus expansion we
are left with a “regular”, ie, Hermitian, Hamiltonian that can
readily provide physical insight into the underlying spin
dynamics.

The time dependence of the spin Hamiltonian stems
from two sources: Firstly, the internal spin interactions are
modulated by the motions of the molecules holding the
spin systems. These motions can be stochastic as the tum-
bling of the molecules in solution or deterministic as the
rotation of the sample in a magic-angle spinning solid-state
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NMR experiment. Secondly, nuclear and electron spins
may be manipulated effectively by pulses of external oscil-
lating magnetic fields, referred to as radio-frequency (rf) or
microwave pulses in case of nuclear and electron spins,
respectively. Especially in case of NMR, we are fortunate
that the applied rf pulses are able to largely dominate the
internal spin interactions, a situation unique compared to
other types of spectroscopy. This has enabled the develop-
ment of an enormous amount of rf pulse sequences not
only to directly excite single and multiple quantum coher-
ences, perform spin echoes and achieve population inver-
sion,12-14 but also to selectively average or decouple certain
spin interactions during parts of the NMR experi-
ment.2,8,10,12-14 In magic-angle-spinning solid-state NMR,
the averaging of the internal spin interactions by the sam-
ple rotation may be suspended over limited time intervals
by applying rf pulse sequences that are synchronized with
the rotation of the sample. These rf schemes are said to re-
couple certain spin interactions. An almost countless num-
ber of such decoupling and recoupling pulse sequences
have been designed during the last 50 years for the appli-
cation in solution and solid-state NMR spectroscopy often
with the crucial help of average Hamiltonian theory.13,15-17

This paper is based on educational lectures on average
Hamiltonian theory presented at different NMR conferences
and solid-state NMR summerschools. It starts with recapitulat-
ing some fundamentals of quantum mechanics in Section 2,
before introducing average Hamiltonian theory in a general,
comprehensive and rigorous manner in Section 3. Finally,
part I of this “Introduction to Average Hamiltonian Theory”
finishes with the application of average Hamiltonian theory to
analytically analyze two composite pulses in Section 4.

2 | FUNDAMENTALS OF QUANTUM
MECHANICS

2.1 | Hamiltonian and Schr€odiger equation

In quantum mechanics, the state of a physical system at a
time point t is represented by its state vector |w(t)i in a
complex vector space known as Hilbert space or state
space.18-20 Every measurable physical quantity (observable)
is described by a Hermitian operator in the state space. The
only possible result of the measurement of a physical quan-
tity is one of the eigenvalues (real numbers) of the corre-
sponding Hermitian operator. The time evolution of the
quantum state |w(t)i is governed by the time-dependent
Schr€odinger equation

d
dt
jwðtÞi ¼ �iHðtÞjwðtÞi; (1)

where H(t) is the Hermitian operator, called the Hamilto-
nian, associated with the total energy of the system, here

expressed as an angular frequency, ie, the eigenvalues of
H(t) multiplied by Planck’s constant ℏ give the energy
levels in Joules (J). As a consequence, in the following, the
eigenvalues of all spin angular momentum operators Ix, Iy,
and Iz will be dimensionless.

During an NMR experiment, the macroscopic sample is,
in principle, described by a state function, which includes
the information about all the electrons and nuclei in the
sample. In practice, the time scale of the electron dynamics
is usually much shorter than that of the nuclear spin
dynamics, which might therefore be described by a state
function for the nuclear spin system and a Hamiltonian
which only includes terms dependent upon the nuclear
spins. This is called the spin Hamiltonian hypothesis.3 In
general, nuclear spins interact with magnetic and electric
fields stemming from within the sample or from external
sources. The contributions to the nuclear spin Hamiltonian
relevant for NMR experiments are in detail presented in
Refs., 21-24 including the interaction with the external sta-
tic and oscillating rf fields, and internal spin interactions,
such as the chemical shift, quadrupolar coupling, direct
dipole coupling, and J-coupling.

2.2 | Time evolution and propagators

If the initial state |w(ta)i of a spin system at time point ta is
known, the state |w(tb)i at a later time point tb ≥ ta with
T = tb � ta is determined by solving the Schr€odinger equa-
tion (Equation 1). The propagator or evolution operator
U(tb, ta) is defined as the unitary operator which transforms
the spin state |w(ta)i into the spin state |w(tb)i:

jwðtbÞi ¼ Uðtb; taÞjwðtaÞi; (2)

where

U�1ðtb; taÞ ¼ Uyðtb; taÞ ¼ Uðta; tbÞ; (3)

The propagation in time is depicted in Figure 1. It is
important to note that as a consequence of Equation 2 propa-
gators accumulate from right to left for subsequent time inter-
vals. Take a time point tc with ta ≤ tc ≤ tb, it then follows

Uðtb; taÞ ¼ Uðtb; tcÞUðtc; taÞ: (4)

The propagator U(t, ta) solves the differential equation

d
dt
Uðt; taÞ ¼ �iHðtÞUðt; taÞ
Uðta; taÞ ¼ 1;

(5)

which may be obtained by substituting Equation 2 into the
Schr€odinger equation. Equation 5 is also referred to as the
Schr€odinger equation for the propagator U(t, ta). It may
also be written as an integral equation that takes the form:
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Uðt; taÞ ¼ 1� i
Z t

ta

dt HðtÞUðt; taÞ: (6)

Figure 2 shows schematically the different cases that
have to be considered when solving Equation 5 to deter-
mine the propagator U(tb, ta) over the time interval [ta, tb].
They are discussed in the following:

i H is time-independent:
Equation (5) can easily be integrated and the propagator
be obtained:

Uðtb; taÞ ¼ expf�iHTg: (7)

ii [H(t0), H(t″)] = 0 for all time points ta ≤ t0, t″ ≤ tb:
The Hamiltonian commutes at all time points in the
interval [ta, tb]. This case is called inhomogeneous in the
sense of Maricq and Waugh.25 The propagator can also
be derived for this case:

Uðtb; taÞ ¼ exp �i
Ztb
ta

dt0Hðt0Þ
8<
:

9=
;: (8)

iii [H(t0), H(t″)] 6¼ 0 for at least one pair of time points
ta ≤ t0, t″ ≤ tb:
The Hamiltonian does not commute at all time points in
the interval [ta, tb]. This case is called homogeneous in
the sense of Maricq and Waugh.25 The propagator can-
not, in general, be derived analytically in this case. An
approximate solution can, however, be determined by
different approaches:

(a) In numerical simulations, the time interval [ta, tb]
is divided into a large number of small intervals
during which H(t) is considered piecewise time-
independent. Consider a division of [ta, tb] into n
small intervals of length sk with k = 0, 1, . . . ,
n � 1. The propagator in this case is given by

Uðtb; taÞ ¼ expf�iHn�1sn�1g. . .
expf�iHkskg. . . expf�iH0s0g; (9)

where Hk denotes the time-independent Hamilto-
nian operative in the kth time interval. In the case
that H(t) is not piecewise time-independent, Equa-
tion 9 can be considered to be a good approxima-
tion if n is sufficiently large. Numerical
simulations based on this approach have in detail
been discussed by Ed�en26-28 in this journal.

(b) In Floquet theory, the time-dependent state-space
Hamiltonian H(t) is expanded into a Fourier ser-
ies.29,30 The time-independent Fourier components
become the elements in a much larger time-

FIGURE 1 Evolution over the time interval [ta, tb]: A, The
propagator U(tb, ta) is defined as unitary operator that transforms the
spin state |w(ta)i and the density matrix q(ta) at time point ta into the
spin state |w(tb)i and the density matrix q(tb) at time point tb. B, The
time-independent effective Hamiltonian �H is defined such that
Uðtb; taÞ ¼ expf�i�HTg

FIGURE 2 Flowchart of the different cases that can be
encountered when trying to solve the differential equation (Equation 5)
to determine the propagator U(tb, ta) over the time interval [ta, tb]
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independent Floquet-space Hamiltonian. The
expansion of the time-dependent state-space
Hamiltonian into the time-independent Floquet-
space Hamiltonian is an exact transformation.
However, as a result, even in the case of a finite-
dimensional state space, the Floquet space
becomes infinite-dimensional. Therefore, solving
the Schr€odinger equation in Floquet space requires
to approximate the infinite-dimensional Floquet
Hamiltonian with an approximate finite-dimen-
sional Floquet Hamiltonian containing the signifi-
cant Floquet components. Despite these
difficulties, Floquet theory has been used exten-
sively to analyze rf pulse sequences in magic-
angle-spinning solid-state NMR.29,30

(c) In average, Hamiltonian theory the propagator U
(tb, ta) is written as an exponential of the form
expf�i�HTg, where �H is the time-independent and
Hermitian effective or average Hamiltonian. In a
following step, �H may be expanded in a series
expansion, called the Magnus expansion,11 where
each term in the expansion is Hermitian. One great
advantage of the Magnus expansion is that it pro-
vides physical insight into the evolution of the
quantum system under the propagator U(tb, ta).
Therefore, average Hamiltonian theory has been
very successful in the design of rf pulse sequences
both in liquid- and solid-state NMR. In Section 3,
average Hamiltonian theory is introduced rigor-
ously. In Section 4, its application to the design
and understanding of two composite pulses in
NMR is demonstrated.

2.3 | Density operator

Consider an NMR sample containing an ensemble of spin
systems, isolated from each other. It is not practical to
describe the complete spin-system ensemble by a single
state function. Instead, the spin-system ensemble is com-
pletely described by the density operator

qðtÞ ¼ jwkðtÞihwkðtÞj ¼
X
k

pkjwkðtÞihwkðtÞj; (10)

where pk is the probability that an individual spin system is
in the spin state |wk(t)i.

The time evolution of the density operator q(t) is gov-
erned by the Liouville-von Neumann equation

d
dt
qðtÞ ¼ �i½HðtÞ; qðtÞ�: (11)

If the initial density operator q(ta) of the spin-ensemble
at time point ta is known, the density operator q(t) at a
later time point t ≥ ta is obtained by

qðtÞ ¼ Uðt; taÞqðtÞUðt; taÞy; (12)

where the propagator U(t, ta) solves Equation 5. Taking the
time derivative of Equation 12 and employing the
Schr€odinger equation (Equation 5) for the propagator result
in the Liouville-von Neumann equation (Equation 11),
which is therefore equivalent to the Schr€odinger equation.
It should be noted how the propagator U(t, ta) “sand-
wiches” the density operator in Equation 12.

2.4 | Rotation operators and radiofrequency
pulses

Nuclear spins may be affected by two different types of
rotation in the course of an NMR experiment: (i) spatial
rotations, such as the tumbling of molecules in solution or
the rotation of the sample as in a magic-angle spinning
experiment. (ii) spin rotations caused by rf pulses or spin
interactions such as the chemical shift. These two types of
rotations are illustrated in Figure 3. It is important to note
that these two types of rotations are independent from each
other, ie, a rotation of the molecule does not rotate the
nuclear spin orientations.

The operators for a rotation of spins I through the angle
b about the x-, y-, and z-axis are defined as

RxðbÞ ¼ expf�ibIxg ð13Þ
RyðbÞ ¼ expf�ibIyg ð14Þ
RzðbÞ ¼ expf�ibIzg: ð15Þ

The corresponding rotations are depicted in Fig-
ure 4A. As mentioned above, spin rotations can be gen-
erated by rf pulses. The Hamiltonian of the interaction
of a system of single I-spins with an on-resonance rf
field in the high-field approximation and in the rotating
frame3 is given by

HrfðtÞ ¼ xnutðIx cos/þ Iy sin/Þ
¼ xnutRzð/ÞIxRzð�/Þ (16)

FIGURE 3 Illustration of how spatial and spin rotations affect a
two spin-1/2 system represented by blue arrows in a molecule
depicted as gray ellipsoid
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where / is the rf phase and xnut is the nutation frequency
of the rf field. In the NMR literature, the symbol x1 often
is used for the nutation frequency, however here we follow
Ref. 3 and use xnut. If the rf field is applied for a duration
s, the resulting rf pulse, denoted b/, rotates the nuclear
magnetic moments by the flip angle b with

b ¼ xnuts; (17)

about a rotation axis that lies in the xy-plane and encloses
the phase angle / with the positive x-axis as shown in Fig-
ure 4B. The angles b and / are typically given in degrees
when sequences of pulses are specified and given in radi-
ans during calculations. Alternatively, we use / = x, y if
the rotation axis is identical to the positive x- or y-axis,
respectively.

If xnut and / are time-independent and the rf pulse
starts at time point ta, the propagator during the rf pulse at
a time point ta ≤ t ≤ ta + s is given by:

Urfðt; taÞ ¼ exp
��ixnutðt � taÞðIx cos/þ Iy sin/Þ

� ð18Þ
¼ Rz

�
/
�
Rx
�
xnutðt � taÞ

�
Rz
��/

�
; ð19Þ

and the propagator over the complete rf pulse is given by:

Urfðta þ s; taÞ ¼ Rzð/ÞRxðbÞRzð�/Þ: (20)

If the rf field is applied with a frequency offset D, the
spin Hamiltonian of the interaction with the rf field is
given by Equation 16 completed by the resonance offset
term:

HD
rf ðtÞ ¼ xnutðIx cos/þ Iy sin/Þ þ DIz

¼ xnutRzð/ÞIxRzð�/Þ þ DIz:
(21)

In order to make this more illustrative, we can define an
effective field as shown in Figure 4C with the effective
nutation frequency xeff and the angle h by which the rota-
tion axis is rotated away from the positive z-axis:

xeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
nut þ D2

q
ð22Þ

h ¼ arctanðxnut=DÞ: ð23Þ
As a result, the Hamiltonian of the rf field in the presence

of an rf frequency offset Equation 21 can be written as:

HD
rf ðtÞ ¼ xeff

�
Ix sin h cos/þ Iy sin h sin/þ Iz cos h

�
¼ xeffRzð/ÞRyðhÞIzRyð�hÞRzð�/Þ
¼ xeffn � I;

(24)

where n�I is the scalar product of the normalized polar
direction vector n = (sin h cos /, sin h sin /, cos h) and
the spin operator vector I = (Ix, Iy, Iz).

If xnut, / and D are time-independent and the off-reso-
nance rf pulse with duration s starts at time point ta, the
propagator during the off-resonance rf pulse at a time point
ta ≤ t ≤ ta + s is given by:

UD
rf ðt; taÞ ¼ exp

��ixeffðt � taÞn � I�
¼ Rzð/ÞRyðhÞRz

�
xeffðt � taÞ

�
Ryð�hÞRzð�/Þ;

(25)

and the propagator over the complete off-resonance rf pulse
is given by:

UD
rf ðta þ s; taÞ ¼ exp

��ibeffn � I�
¼ Rzð/ÞRyðhÞRzðbeffÞRyð�hÞRzð�/Þ; (26)

where beff is the effective flip angle of the pulse around
the direction n of the effective field,

beff ¼ xeffs ¼ b
sin h

¼ Ds
cos h

; (27)

where the alternative expressions in Equation 27 allow us to
easily identify the two limiting cases: (i) h = p/2, resulting in
beff = b, hence for an on-resonance pulse (D = 0) the
expected flip angle b is obtained. (ii) h = 0, resulting in
beff = Ds, hence for the case where the nutation frequency of
the rf field is zero (xnut = 0), the evolution corresponds to the
spin precession by the angle Ds due to the resonance offset.

3 | AVERAGE HAMILTONIAN
THEORY

After being briefly introduced in Section 2.2, here average
Hamiltonian theory is presented more rigorously.

FIGURE 4 A, The rotation operators Rx(b), Ry(b) and Rz(b)
produce spin rotations around the x-, y-, and z-axis, respectively. B,
An on-resonance rf pulse b/ with nutation frequency xnut generates a
rotation of the nuclear spins by the flip angle b about an axis that lies
in the xy-plane and encloses the phase angle / with the positive x-
axis. C, The same rf pulse applied with an rf frequency offset Δ,
results in a rotation with the effective field xeff ¼ ðx2

nut þ D2Þ1=2
about an axis that encloses the angle h = arctan (xnut/D) with the
positive z-axis
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3.1 | Effective Hamiltonian and Magnus
expansion

Consider again the evolution of the spin system over the time
interval [ta, tb] with T = tb � ta by the propagator U(tb, ta) as
introduced in Section 2.2 and depicted in Figure 1. The propa-
gator is a solution to Equation 5, governed by the time-depen-
dent Hamiltonian H(t). It is both useful and insightful to define
a time-independent effective or average Hamiltonian �H through

Uðtb; taÞ ¼ expf�i�HTg; (28)

analog to the case of Equation 7, in which the Hamilto-
nian H is time-independent over the interval [ta, tb].

The effective Hamiltonian may be expanded in a series
expansion, called the Magnus expansion:11

�H ¼ �Hð1Þ þ �Hð2Þ þ �Hð3Þ þ �Hð4Þ þ . . . (29)

where the term �HðnÞ is referred to as the nth order average
Hamiltonian. If the expansion is terminated at the nth
order, the effective Hamiltonian �H in Equation 29 and the
resulting propagator in Equation 28 are said to have been
calculated in nth order average Hamiltonian theory. The
first four orders of the Magnus expansion are given by

�Hð1Þ ¼ 1
T

Ztb
ta

dt HðtÞ (30)

�Hð2Þ ¼ 1
2iT

Ztb
ta

dt
Z t

ta

dt0
�
HðtÞ;Hðt0Þ� (31)

�Hð3Þ ¼ � 1
6T

Ztb
ta

dt
Z t

ta

dt0
Zt0
ta

dt00
	h

HðtÞ; �Hðt0Þ;Hðt00Þ�i

þ
h�
HðtÞ;Hðt0Þ�;Hðt00Þ

i

(32)

�Hð4Þ ¼ � 1
12iT

Ztb
ta

dt
Z t

ta

dt0
Zt0
ta

dt00
Zt00
ta

dt000

�
(�h�

HðtÞ;Hðt0Þ�;Hðt00Þ
i
;Hðt000Þ

�

þ
�
HðtÞ;

h�
Hðt0Þ;Hðt00Þ�;Hðt000Þ

i�

þ
�
HðtÞ;

h
Hðt0Þ; �Hðt00Þ;Hðt000Þ�i�

þ
�
Hðt0Þ;

h
Hðt00Þ; �Hðt000Þ;HðtÞ�i�

)

: (33)

It should be noted that the indexing of the Magnus
expansion is equal to the order to which the Hamiltonian

H(t) appears in the respective expression. Hence, the index-
ing starts with one, whereas older literature on average
Hamiltonian theory uses indices that are one less than those
given here.7,8 The fourth order expression given above is
based on those published by Wilcox,31 Bialynicki-Birula
et al32 and later by Klarsfeld and Oteo.33 An important
property of the Magnus expansion is that each term �HðnÞ in
the expansion is Hermitian, resulting also in a Hermitian
effective Hamiltonian in any order of truncation. This
ensures that the propagator is indeed unitary in any order
of average Hamiltonian theory. Furthermore, since the
effective Hamiltonian �H and the propagator U(tb, ta) are
time-independent, they enable an illustrative interpretation
of the average quantum dynamics under the time-depen-
dent Hamiltonian H(t) during the time interval [ta, tb].
However, the effective Hamiltonian does not allow to pre-
dict the exact dynamics of the spin system during the time
interval [ta, tb].

The Magnus expansion converges rapidly if, for any
time ta ≤ t ≤ tb, the condition

kHðtÞkT � 1 (34)

is fulfilled, where the norm, ||H(t)||, might, for example, be
chosen to be

kHðtÞk ¼ �
TrfHðtÞ2g�1=2: (35)

The condition in Equation 34 is very conservative and
is not necessary fulfilled in many practical applications of
the Magnus expansion.

From Equations 30-33, the following four special cases
can be readily identified:

i [H(t0), H(t″)] = 0 for all time points ta ≤ t0, t″ ≤ tb:
This inhomogeneous case has been discussed before,
see Equation 8. As the Hamiltonian commutes at all
time points in the interval [ta, tb], all average Hamilto-
nian terms with order higher than one are equal to zero:

�HðnÞ ¼ 0 for all n[ 1; (36)

and as a result, the exact effective Hamiltonian is given
by the first order average Hamiltonian:

�H ¼ �Hð1Þ: (37)

ii H(t) is symmetric:
If H(ta + s) = H(tb � s) for any 0 ≤ s ≤ (tb � ta), H(t)
is referred to as being symmetric in time over the time
interval [ta, tb]. In this case, all even order average
Hamiltonian terms are equal to zero, as shown first by
Mansfield:34
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�HðnÞ ¼ 0 for all even n; (38)

leading to

�H ¼ �Hð1Þ þ �Hð3Þ þ �Hð5Þ þ . . . (39)

This is an important property and tool in the design of
multiple pulse sequences, where often a particular first
order average Hamiltonian is desired, whereas higher
orders ideally should disappear, especially in the pres-
ence of errors in the pulse sequence or large disruptive
spin interactions, such as rf frequency offsets or chemi-
cal shift anisotropies.8,34,35

iii H(t) is antisymmetric:
If H(ta + s) = �H(tb � s) for any 0 ≤ s ≤ (tb � ta),
H(t) is referred to as being antisymmetric in time over
the time interval [ta, tb]. This case results in all orders
of average Hamiltonian terms disappearing:34

�HðnÞ ¼ 0 for all n; (40)

which leads to

�H ¼ 0 ð41Þ
Uðtb; taÞ ¼ 1; ð42Þ

ie, the propagator is identical to unity, hence the spin
system at time point tb has returned to its initial state at
time point ta. Although this might look trivial, NMR
techniques exploiting this characteristic, such as spin
echoes36 and rotational echoes25 are highly important
over a wide range of applications.

iv H(t) is piecewise time-independent: The last case we
would like to consider in this list is that of a Hamiltonian
H(t), which is piecewise time-independent over the inter-
val [ta, tb]. Consider the division of [ta, tb] into N sub-
intervals [tk, tk+1] with durations sk = tk+1 � tk, so that

HðtÞ ¼Hk for tk� t� tkþ1 and k¼ 1; . . . ;N; (43)

where t1 � ta and tN+1 � tb. In this case, the first two
orders of the Magnus expansion in general are given by

�Hð1Þ ¼ 1
T

XN
k¼1

Hksk ð44Þ

�Hð2Þ ¼ 1
2iT

XN
k¼2

Xk�1

l¼1

�
Hk;Hl

�
sksl: ð45Þ

The third order is more complicated to write out in gen-
eral. Therefore, we consider the simple case of two sub-
intervals of [ta, tb] over which H(t) is piecewise time-inde-
pendent. This is depicted in Figure 5. In this case, the first
three orders of the Magnus expansion simplify to

�Hð1Þ ¼ 1
T

�
H1s1 þ H2s2

� ð46Þ

�Hð2Þ ¼ 1
2iT

�
H2;H1

�
s2s1 ð47Þ

�Hð3Þ ¼ � 1
12T

	h
H2;

�
H2;H1

�i
s22s1

þ
h�
H2;H1

�
;H1

i
s2s

2
1



; ð48Þ

where the integration intervals, areas and volumes for
each order are shown in Figure 5, respectively. Since the
Hamiltonian is piecewise time-independent solely, pair-
wise different blocks have to be considered in the commu-
tators in Equations 31 and 32. Hence, solely the integral
over the area of size s2s1 highlighted in green in

FIGURE 5 Integration intervals, areas and volumes in A, first,
B, second, and C, third order average Hamiltonian theory of a
Hamiltonian that is piecewise time-independent
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Figure 5B contributes to �Hð2Þ in Equation 31 resulting in
Equation 47. Similarly, solely the integrals over the two
volumes of sizes s2s21=2 and s22s1=2 shown in yellow and
green in Figure 5C, respectively, contribute to �Hð3Þ in
Equation 32 leading to the result in Equation 48.

3.2 | Interaction frame

As discussed in Section 3.1, the Magnus expansion Equa-
tion 29 of the effective Hamiltonian over the time interval
[ta, tb] only converges if the norm of the Hamiltonian H(t)
is small, see the convergence condition Equation 34. How-
ever, the convergence of the Magnus expansion may be
improved drastically by transforming the Hamiltonian H(t)
into a suitable interaction frame, often referred to as inter-
action picture or interaction representation in textbooks on
quantum mechanics.19,20 Consider the case where the
Hamiltonian may be expressed as a sum of two terms

HðtÞ ¼ HAðtÞ þ HBðtÞ; (49)

where both parts may be time-dependent and might not
commute in general. Here, HA(t) is the larger part and
should be chosen in such a way that the propagator UA(t,
ta), solving the equation

d
dt
UAðt; taÞ ¼ �iHAðtÞUAðt; taÞ ð50Þ
UAðta; taÞ ¼ 1; ð51Þ

can easily be determined analytically. It proves to be a
useful ansatz to express U(t, ta) as the product of UA(t,
ta) and the so-called interaction frame propagator
~Uðt; taÞ: Uðt; taÞ ¼ UAðt; taÞ~Uðt; taÞ: (52)

Inserting this ansatz into Equation 5 leads to

d
dt

~Uðt; taÞ¼

� i


Uy

Aðt; taÞHðtÞUAðt; taÞ� iUy
Aðt; taÞ

� d
dt
UAðt; taÞ

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~HðtÞ

~Uðt; taÞ ;

(53)

where we have defined the interaction frame Hamiltonian
~HðtÞ such that the interaction frame propagator ~Uðt; taÞ
solves the differential equation

d
dt

~Uðt; taÞ ¼ �i~HðtÞ~Uðt; taÞ ð54Þ
~Uðta; taÞ ¼ 1: ð55Þ

The interaction frame Hamiltonian ~HðtÞ defined in
Equation 53 may be simplified using Equations 49 and 50
such that one obtains:

~HðtÞ ¼ ~HBðtÞ ¼ UAðt; taÞyHBðtÞUAðt; taÞ: (56)

Note that the propagator UA(t, ta), which depends upon
two time points, is used as the transformation operator,
which strictly spoken should only depend upon the time
point t.37

If we consider again the scenario depicted in Figure 1
and described in Section 3.1, ie, the evolution of the spin
system over the time interval [ta, tb] with T = tb � ta under
the Hamiltonian shown in Equation 49, the propagator
U(tb, ta) may therefore be written as:

Uðtb; taÞ ¼ UAðtb; taÞ~Uðtb; taÞ; (57)

where the interaction frame propagator ~Uðtb; taÞ may be
expressed in terms of an effective interaction frame Hamil-
tonian �HB analogous to Equation 28 and analyzed by the
Magnus expansion Equation 29:

~Uðtb; taÞ ¼ expf�i�HBTg ð58Þ
�HB ¼ �Hð1Þ

B þ �Hð2Þ
B þ �Hð3Þ

B þ �Hð4Þ
B þ . . . ð59Þ

The individual orders of the Magnus expansion are
given by Equations 30-33, where the Hamiltonian H(t) has
to be replaced by the interaction frame Hamitlonian
~HðtÞ ¼ ~HBðtÞ.

In practice, the choice of the interaction frame
depends on the particular Hamiltonian relevant to the
problem under study. For example, in NMR spec-
troscopy, the dominating term in the spin Hamiltonian is
the Zeeman interaction of the spins with the external sta-
tic magnetic field. The interaction frame of the Zeeman
interaction is referred to as the rotating frame and the
spin Hamiltonian commonly used in NMR spectroscopy
corresponds to the first, and sometimes second, order
average Hamiltonian in the rotating frame of the Zeeman
interaction.2,3,9,38,39 Once the NMR Hamiltonian is pre-
sented in the rotating frame, other interactions become
suitable choices for a further interaction frame transfor-
mation.

A common choice in the application of average Hamil-
tonian theory to the design of rf pulse sequences is to
transform the rotating frame spin Hamiltonian into the
interaction frame of the rf field, also commonly referred to
as the toggling frame.8 Another possible choice is the inter-
action frame of a dominating internal spin interaction in
the rotating frame such as the chemical shift anisotropy or
the quadrupolar coupling, sometimes referred to as the jolt-
ing frame.40 However, rather than using the terms “tog-
gling frame” and “jolting frame”, I would for clarity
instead recommend using the term “interaction frame
of. . .”.
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3.3 | Periodic Hamiltonian

Many interactions of the nuclear spins within the spin sys-
tem and with external magnetic fields are periodic in time,
modulated for example by periodic sequences of rf pulses
or by the rotation of the sample in magic-angle spinning
experiments. In this section, we would like to extend aver-
age Hamiltonian theory to the case of periodic spin Hamil-
tonians H(t):

Hðt þ NTÞ ¼ HðtÞ: (60)

where T is the period of the Hamiltonian and N is any
integer. This case is shown schematically in Figure 6. It
is particularly useful to choose one period as the inter-
val [ta, tb] with T = tb � ta over which the effective
Hamiltonian �H should be determined according to Equa-
tion 28. This enables us to reuse the effective Hamilto-
nian to propagate the spin system over integer multiplies
of T:

Uðta þ T ; taÞ ¼ Uðtb; taÞ ¼ expf�i�HTg ð61Þ
Uðta þ NT ; taÞ ¼ expf�i�HNTg ð62Þ

The effective Hamiltonian �H over one period T may
now be analyzed by the Magnus expansion Equation 29 as
described in detail in Section 3.1.

Perhaps more interesting is the case where we would
like to transform a periodic Hamiltonian into the interaction
frame of a dominant term in the Hamiltonian. Analogous
to the case discussed in the previous Section 3.2, the peri-
odic Hamiltonian H(t) is expressed as sum of two terms

HðtÞ ¼ HAðtÞ þ HBðtÞ
periodic

HAðtþNTÞ¼HAðtÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
periodic

HBðtþNTÞ¼HBðtÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
(63)

where we have indicated that both terms HA(t) and HB(t)
need to be periodic with the same period T as H(t) itself.
This ensures that also the interaction frame Hamiltonian
~HðtÞ ¼ ~HBðtÞ in Equation 56 is periodic:

~HBðtÞ ¼ UAðt; taÞyHBðtÞUAðt; taÞ ð64Þ
~HBðt þ NTÞ ¼ ~HBðtÞ ð65Þ

The resulting total propagator over a single period T
may be calculated according to Equation 57:

Uðta þ T; taÞ ¼ UAðta þ T ; taÞ~Uðta þ T ; taÞ
¼ UAðta þ T; taÞ expf�i�HBTg:

(66)

Similar as in Equation 62, we may reuse the effective
Hamiltonian to determine the propagator at multiples of T:

Uðta þ NT ; taÞ ¼
�
UAðta þ T ; taÞ expf�i�HBTg

�N
; (67)

where we note that UA(ta + T,ta) and expf�i�HBTg do not
necessarily commute, hence this result cannot be further
simplified in general.

However, in most of the literature on average Hamiltonian
theory, another condition is imposed on HA(t), namely that it
needs to be cyclic, ie, its propagator UA(tb, ta) over the period
T needs to be positive or negative identity, returning the spins
at time point tb, after the evolution time T, back to its original
state they were in at time point ta:

2,7-10

UAðtb; taÞ ¼ 	1: (68)

In this case, Equations 66 and 67 straightforwardly sim-
plify to

Uðta þ T; taÞ ¼ expf�i�HBTg ð69Þ
Uðta þ NT ; taÞ ¼ expf�i�HBNTg: ð70Þ

3.4 | Average Hamiltonian theory summary
sheet

In Sections 3.1-3.3, we have not only introduced average
Hamiltonian in general but also considered more advanced
topics such as the interaction frame and periodic Hamiltoni-
ans. In light of the significant amount of material, the
reader had to follow up to this point, Figure 7 provides
an overview and summary sheet of average Hamiltonian
theory that is covered in this paper, it is presented as a
flowchart or decision tree: On the top, we start with the

FIGURE 6 Visualization of a Hamiltonian H(t) that is periodic
in time with period T. If the effective Hamiltonian �H is determined
over one period T, it is straightforward to obtain the propagator over
time intervals that are integer multiples of T
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time-dependent Hamiltonian H(t) of the spin system.
Depending on whether the Hamiltonian is periodic in time
or not, either the left or right route is taken. In the next
step, it is distinguished if the Hamiltonian can be written
as the sum of two terms, HA(t) and HB(t), so that a trans-
formation into the interaction frame can be performed
before the Magnus expansion is applied. Hence, in total,
four cases are shown in the overview sheet, where the
last two rows show how the Magnus expansion is per-
formed and the propagator appears. The reader is encour-
aged to consult this overview sheet whenever applying
average Hamiltonian theory in practice and to dive back
into Sections 3.1-3.3 for details.

4 | COMPOSITE PULSES

After having laid the groundwork of average Hamiltonian the-
ory in the previous sections, it is time to step-by-step work
through a couple of examples, for educational purposes in far
more detail than is usually encountered in the NMR literature.
One prominent area in NMR that benefited from the applica-
tion of average Hamiltonian theory in the 1980s was the devel-
opment of so-called composite pulses.12-14 A composite pulse
is a series of rectangular rf pulses that replace a single rectan-
gular rf pulse in a pulse sequence. Under ideal conditions, ie,
the spin system solely experiences the Zeeman interaction and
the interaction with the rf field, the transformation of the spin
system imposed by the composite pulse is identical to the one
imposed by the rectangular pulse it replaces.12-14 However,
composite pulses are commonly designed such that they are
less sensitive to the exact setting of the rf field amplitude and
frequency offset. In this section, we will examine in detail two
seminal composite 180° pulses by average Hamiltonian theory.

4.1 | The composite pulse 90y180x90y

The first composite pulse we will study by average Hamilto-
nian theory is a group of three pulses 90y180x90y, which under
ideal conditions is equivalent to a 180x pulse. It was first con-
structed using geometrical arguments by Levitt and Freeman
as an inversion pulse that is compensated with respects to mis-
setting of the rf amplitude.41 In this section, the consequences
of such an rf amplitude error on the transformation of the spin
system during the composite pulse will be analyzed by aver-
age Hamiltonian theory and compared with exact calculations
and the performance of a single rf pulse.

The composite pulse 90y180x90y together with its timing
is depicted in Figure 8A. The three consecutive pulses are
labeled ①, ②, and ③. The starting time point of the
sequence is denoted t0, the time point after the first 90y
pulse ① is labeled t1, the time point after the 180x pulse
② is denoted t2, and the time point after the final 90y pulse

③ is labeled t3. Consequently, the durations of the
individual pulses and the complete composite pulse are
given by s1 = t1 � t0, s2 = t2 � t1, s3 = t3 � t2, and
T = t3 � t1 = s1 + s2 + s3, respectively. The ideal nutation
frequency throughout the composite pulse is constant and
given by xnut. Hence, the following relationships are ful-
filled for the flip angles and durations of the pulses:

xnuts1 ¼ xnuts3 ¼ p
2

xnuts2 ¼ p

xnutT ¼ 2p

(71)

The absolute rf amplitude error is denoted x�, hence the
total rf amplitude during the composite pulse is given by
xnut + x�. We can also define a relative rf amplitude error
� as the ratio � = x�/xnut.

4.1.1 | Hamiltonian

Consider a system of single I-spins that are subject solely to
the Zeeman interaction and the interaction with the rf field dur-
ing the composite pulse shown in Figure 8A. The Hamiltonian
at time point t in the high-field approximation and in the rotat-
ing reference frame3 is according to Equation 16 given by

HðtÞ ¼ ðxnut þ x�ÞðIx cos/ðtÞ þ Iy sin/ðtÞÞ
¼ ðxnut þ x�ÞRzð/ðtÞÞIxRzð�/ðtÞÞ
¼ xnutRzð/ðtÞÞIxRzð�/ðtÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HAðtÞ
þx�Rzð/ðtÞÞIxRzð�/ðtÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HBðtÞ
;

(72)

where /(t) is the rf phase at time point t during the compos-
ite pulse. In the last line of Equation 72, the Hamiltonian has
been written as the sum of two parts HA(t) and HB(t), where
HA(t) corresponds to the Hamiltonian of the interaction with
the ideal rf field and HB(t) is the small perturbation Hamilto-
nian of the rf amplitude error. Naturally, as outlined in Sec-
tion 3.2, this offers the opportunity to transform the
Hamiltonian H(t) into the interaction frame of HA(t) before
applying average Hamiltonian theory. As a result, since H(t)
is non-periodic, this case falls into the second column of Fig-
ure 7. For the different time periods during the composite
pulse, HA(t) and HB(t) are explicitly given by:

HAðtÞ ¼ xnutIy for t0 � t\t1 or t2 � t� t3
xnutIx for t1 � t\t2

	
(73)

and

HBðtÞ ¼ x�Iy for t0 � t\t1 or t2 � t� t3
x�Ix for t1 � t\t2.

	
(74)

4.1.2 | Rf propagator

In order to transform H(t) in Equation 72 into the interac-
tion frame of HA(t), we need to calculate the rf propagator
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FIGURE 7 Overview and summary sheet of average Hamiltonian theory
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solving the corresponding Schr€odinger equation (Equa-
tion 50). Since the Hamiltonian is piecewise time-indepen-
dent during the composite pulse, this is straightforward:

UAðt; t0Þ ¼
Ry xnutðt � t0Þð Þ for t0 � t\t1
Rx xnutðt � t1Þð ÞRy

p
2

� �
for t1 � t\t2

Ry xnutðt � t2Þð ÞRx pð ÞRy
p
2

� �
for t2 � t� t3.

8<
:

(75)

Note how the propagators accumulate from right to left
in the second and third line, see also Equation 4. In the
next step, we use the time-dependent flip angles
b�ðtÞ ¼ xnutðt � t0Þ, b`ðtÞ ¼ xnutðt � t1Þ and
b´ðtÞ ¼ xnutðt � t2Þ to simplify the propagator expression:

UAðt; t0Þ ¼
Ry b�ðtÞð Þ for t0 � t\t1
Rx b`ðtÞð ÞRy

p
2

� �
for t1 � t\t2

Ry b´ðtÞ � p
2

� �
Rx pð Þ for t2 � t� t3,

8<
: (76)

where we used in the last line the transformation

RxðpÞRy
p
2

� �
¼ RxðpÞRy

p
2

� �
Rxð�pÞRxðpÞ ¼ Ry � p

2

� �
RxðpÞ:
(77)

Finally, for the transformation into the interaction frame,
we also need to calculate the adjoint of the rf propagator:

Uy
Aðt; t0Þ ¼

Ry �b�ðtÞð Þ for t0 � t\t1
Ry � p

2

� �
Rx �b`ðtÞð Þ for t1 � t\t2

Rx �pð ÞRy �b´ðtÞ þ p
2

� �
for t2 � t� t3.

8<
:

(78)

4.1.3 | Interaction frame Hamiltonian

With the help of the rf propagators calculated in the previ-
ous section, we can now transform the Hamiltonian H(t)
into the interaction frame of HA(t) as shown in Equa-
tion 56:

~HBðtÞ ¼

Ry �b�ðtÞð Þx�IyRy b�ðtÞð Þ for t0 � t\t1
Ry � p

2

� �
Rx �b`ðtÞð Þ

� x�IxRx b`ðtÞð ÞRy
p
2

� �
for t1 � t\t2

Rx �pð ÞRy �b´ðtÞ þ p
2

� �
�x�IyRy b´ðtÞ � p

2

� �
Rx pð Þ for t2 � t� t3.

8>>>>>>><
>>>>>>>:

(79)

This can readily simplified since the spin operators and
rotation operators commute in most of the cases:

~HBðtÞ ¼
~H�
B ¼ x�Iy for t0 � t\t1

~H`
B ¼ x�Iz for t1 � t\t2

~H´
B ¼ �x�Iy for t2 � t� t3,

8<
: (80)

where we have introduced the shorthand notation ~H�
B , ~H`

B

and ~H´
B for the three time-independent interaction frame

Hamiltonians during blocks ①, ②, and ③ of the compos-
ite pulse. Hence, we note that the final interaction frame
Hamiltonian is piecewise time-independent, a case gener-
ally discussed in Section 3.1.

4.1.4 | First order average Hamiltonian and
propagator

After we have determined the interaction frame Hamilto-
nian in Equation 80, it is now time to calculate the first
order average Hamiltonian according to Equations 30 and
44:

�Hð1Þ
B ¼ 1

T

Zt3
t0

dt ~HðtÞ

¼ 1
T

~H�
B s1 þ ~H`

B s2 þ ~H´
B s3

� �
¼ 1

4
x�Iy þ 1

2
x�Iz � 1

4
x�Iy

¼ 1
2
x�Iz

(81)

This is the first order average Hamiltonian in the inter-
action frame of the rf field. Hence, the resulting total prop-
agator U(t3, t0) over the whole composite pulse is
according to Equation 57 to first order average Hamilto-
nian theory given by the product of UA(t3, t0) and the prop-
agator �UBðt3; t0Þ ¼ expf�i�Hð1Þ

B Tg:

FIGURE 8 Timing Diagrams of the two composite inversion
pulses discussed in the text using average Hamiltonian theory: A, the
90y180x90y composite pulse, and B, the 90ybx90y composite pulse,
where the flip angle b will be optimized such that the resulting
inversion pulse is compensated with respect to rf frequency offsets in
first order average Hamiltonian theory
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Uðt3; t0Þ 
 UAðt3; t0Þ�UBðt3; t0Þ
¼ UAðt3; t0Þ expf�i�Hð1Þ

B Tg

¼ RxðpÞRz
1
2
x�T


 �
¼ RxðpÞRzðp�Þ;

(82)

where we used the relative amplitude error � = x�/xnut,
and the relationship xnutT = 2p. The final propagator is a
product of two rotations, first a rotation around the z-axis
by p�, which depends on the relative amplitude error,
and second the ideal rotation by p around the x-axis,
which corresponds to a 180x pulse. Hence, under the
90y180x90y composite pulse, inversion of longitudinal
magnetization is compensated for rf amplitude errors in

first order average Hamiltonian theory, whereas transverse
magnetization acquires a phase with value �p� in the
xy-plane under inversion.

To illustrate this, Figure 9 shows the results of calculat-
ing the trajectory of three density operators q0 = Iz, Ix and
Iy, corresponding to z-, x-, and y-magnetization, during a
single 180x pulse and during the 90y180x90y composite
pulse in the presence of relative amplitude errors of
� = �5% (A-C) and �15% (D-F). The density operator
after the propagation under the sequence of pulses is
labeled q1. The graphs were plotted with the help of Mal-
colm H. Levitt’s Mathematica42 package mPackages (ver-
sion 4.30), the predecessor of SpinDynamica.43

Let’s start by having a closer look at the left panel (A-
C), showing the results for an amplitude error of � = �5%,

FIGURE 9 Trajectories of z-, x-, and y-magnetization vectors during a single 180x pulse and during the 90y180x90y composite pulse in the
presence of relative rf amplitude errors � of �5% and �15%. Details are discussed in the text
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and in particular the first row (A) that shows the trajectory
of a z-magnetization vector (q0 = Iz). Since the rf ampli-
tude is set slightly too small, the z-magnetization is not
completely inverted under a single 180x pulse, as can be
seen on the left. The panel in the middle shows the exact
trajectory the z-magnetization takes during the 90y180x90y
composite pulse, leading to perfect inversion in spite of the
misset of the rf amplitude (q1 = �Iz). This graph elucidates
the mechanism of compensation for rf amplitude errors:
The first 90y pulse rotates the z-magnetization vector to a
position slightly above the x-axis, since the rf amplitude
error causes the flip angle to be slightly less than 90°. The
following 180x pulse rotates the magnetization slightly
below the xy-plane, however, because of the amplitude
error, the final position is not exactly below the x-axis.
Finally, the last 90y pulse rotates the magnetization vector
to a position that is almost perfectly along the �z-axis, as
its flip angle is again slightly less than 90°.

The trajectory under the propagator in first order average
Hamiltonian theory is shown on the right: it corresponds to a
perfect inversion of the z-magnetization vector. It is impor-
tant to remind the reader that the propagator based on the
average Hamiltonian strictly may be used solely to calculate
the final density operator q1 after the pulse sequence, it does
not provide any insight into the actual trajectory of the spin
system during the sequence of pulses, as is evident by com-
paring the exact trajectories with the ones based on average
Hamiltonian theory in Figure 9.

The second row (B) in the left panel of Figure 9 shows
the trajectory of an x-magnetization vector (q0 = Ix). As
expected a single 180x pulse does not result in any rotation,
ie, q1 = q0 = Ix, shown on the left. More interesting is the
exact trajectory of the x-magnetization under the
90y180x90y composite pulse. The small rf amplitude error
causes the final magnetization vector to lie in the xy-plane
enclosing a small angle with the x-axis, given by
�p� = 9°. The final density operator q1 is nicely repro-
duced by the trajectory under the propagator in first order
average Hamiltonian theory, as shown on the right.

Finally, the different trajectories of y-magnetization are
show in row (C) in the left panel of Figure 9. Due to the
small rf amplitude error the single 180x pulse does not
invert the y-magnetization entirely, rather the magnetization
vector stops above, short of the �y-axis. In contrast, after
the 90y180x90y composite pulse, the final magnetization
vector lies in the xy-plane, enclosing the small angle of 9°
as discussed above with the �y-axis. The same final den-
sity operator is reproduced in first order average Hamilto-
nian theory as shown on the right.

So far, the relative amplitude error � has been small
enough, so that first order average Hamiltonian theory
proved to be sufficient for calculating the propagator over

the composite pulse satisfactory when comparing the
results with exact calculations. However, in the following
we want to turn our attention to the results shown in the
right panel (D-F) of Figure 9 for an amplitude error of
� = �15%, in which case first order average Hamiltonian
theory will be shown to be insufficient.

The first row (D) shows the trajectory of a starting
density operator Iz (z-magnetization). The larger rf ampli-
tude misset causes the final position of the magnetization
vector to clearly fall short of the �z-axis for a single
180x pulse. Interestingly, also the 90y180x90y composite
pulse fails to perfectly invert the z-magnetization, how-
ever the resulting error is smaller than in the case of the
single 180x pulse. However, the first order average
Hamiltonian does still cause a perfect inversion of the z-
magnetization. We can conclude that for a relative rf
amplitude error of � = �15% first order average Hamilto-
nian theory is not sufficient to calculate the propagator
under the 90y180x90y composite pulse satisfactory. Hence,
in the following section we will go a step further and
calculate the second order average Hamiltonian for the
90y180x90y composite pulse in the presence of an rf
amplitude error.

4.1.5 | Second order average Hamiltonian
and propagator

Since the interactions frame Hamiltonian in Equation 80 is
piecewise time-independent we can calculate the second
order average Hamiltonian as outlined in Section 3.1, ie,
we solely have to include commutators of the interaction
frame Hamiltonian during pairwise different blocks (①, ②
or ③) of the composite pulse, see Equation 45:

�Hð2Þ
B ¼ 1

2iT

Zt3
t0

dt
Z t

t0

dt0½~HðtÞ; ~Hðt0Þ�

¼ 1
2iT

n
½~H`

B ;
~H�
B �s2s1 þ ½~H´

B ;
~H�
B �|fflfflfflfflffl{zfflfflfflfflffl}

¼ 0

s3s1 þ ½~H´
B ;

~H`
B �s3s2

o

¼ T
16i

n
½~H`

B ;
~H�
B � þ ½~H´

B ;
~H`
B �
o

¼ T
16i

x2
�

n
½Iz; Iy� � ½Iy; Iz�

o
¼ � p

4
x2
�

xnut
Ix;

(83)

where we have made extensive use of the definitions and
relationships of time intervals during the composite pulse
given in Equation 71 and above. Furthermore, we used the
commutator relationship [Iy, Iz] = iIx. To gain further
insight into the significance of the second order average
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Hamiltonian in the rf interaction frame, we collect the first
and second order results, Equations 81 and 83, respec-
tively, to arrive at the total propagator U(t3, t0) over the
whole composite pulse in second order average Hamilto-
nian theory:

Uðt3; t0Þ 
 UAðt3; t0Þ�UBðt3; t0Þ
¼ RxðpÞ expf�ið�Hð1Þ

B þ �Hð2Þ
B ÞTg

¼ RxðpÞ exp �iT
1
2
x�Iz � p

4
x2
�

xnut
Ix


 �	 


¼ RxðpÞ exp �i p�Iz � 1
2
p2�2Ix


 �	 

¼ RxðpÞ exp �ibeff Iz cos h� Ix sin hð Þf g;

(84)

where the exponential operator in the last line represents a
rotation about an axis in the �xz-plane that encloses the
angle h = arctan (p�/2) with the z-axis by the flip angle
beff ¼ p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2�2=4

p
. We can perform a consistency

check of this result comparing it with the first order aver-
age Hamiltonian propagator: If p� is sufficiently small, we
get beff 
 p�, cos beff 
 1 and sin beff 
 0, consequently
arriving back at the result in Equation 82.

Now we can revisit the results shown in the right
panel (D-F) of Figure 9 for an amplitude error of
� = �15%. In Section 4.1.4 we saw that the propagator
for the 90y180x90y composite pulse in first order average
Hamiltonian theory was not able to correctly generate
the final position of the magnetization vector starting
from z-magnetization, (q0 = Iz) as can be seen in the
third column of the first row (D). However, the last col-
umn shows the trajectory under the propagator in second
order average Hamiltonian theory starting from z-magne-
tization. It is evident that the final position reached by
the magnetization vector resembles very well the final
position after the exact trajectory during the 90y180x90y
composite pulse.

The second row (E) in the right panel of Figure 9
shows the trajectories of x-magnetization. A single 180x
pulse even with an amplitude error has no influence, hence
the starting and finishing magnetization vectors are identi-
cal, as shown in the left column. The exact trajectory of x-
magnetization during the 90y180x90y composite pulse is
depicted in the second columns, it finishes with the magne-
tization vector lying in the xy-plane enclosing an angle of
about �p� = 27° with the x-axis. We note that this specific
result can already very well be predicted by employing the
propagator in first average Hamiltonian theory as is shown
in the third column. Hence, the trajectory using second
order average Hamiltonian theory, shown in the right col-
umn, is almost indistinguishable from the one using first
order theory.

The last row (C) in the left panel of Figure 9 shows the
different trajectories of y-magnetization. Due to the larger
amplitude error, a single 180x pulse fails clearly to invert
y-magnetization, leading to a final magnetization vector
well above the �y-axis. The exact trajectory of y-magneti-
zation under the 90y180x90y composite pulse leads the
magnetization vector to its final position in the xy-plane,
enclosing a small angle with the �y-axis, as can be seen in
the second column. Interestingly, in first order average
Hamiltonian theory the final magnetization vector encloses
a larger angle with the �y-axis (third column), not in
agreement with the result of the exact trajectory. However,
the propagator in second order average Hamiltonian theory,
leads to a final position that is in agreement with the result
of the exact trajectory.

Concluding this section, we could show that for a larger
error in the rf amplitude of � = �15% the propagator in
second order average Hamiltonian theory was sufficient to
reproduce satisfactory the final magnetization vectors com-
pared to the exact propagation.

4.2 | The composite pulse 90y270x90y
In the previous section we have used average Hamiltonian
theory to show that the 90y180x90y composite pulse is
compensated with respect to rf amplitude errors if
employed as an inversion pulse of longitudinal magnetiza-
tion. However, an important application of average Hamil-
tonian theory is not only to understand existing pulse
sequences, but also to design pulse sequences with certain
desired properties. In this section we want to demonstrate
how to design a simple composite pulse that is compensated
with respects to the rf frequency offset using first order
average Hamiltonian theory. We will start with a slight modi-
fication of the previous 90y180x90y pulse that allows a single
degree of freedom to be optimized for the targeted compen-
sation property: 90ybx90y, where b is the flip angle parame-
ter, which should be optimized such that the resulting
composite pulse is compensated in first order average Hamil-
tonian theory with respect to rf frequency offsets.

Figure 8B shows the timings of the 90ybx90y composite
pulse. The durations of the individual pulses ①, ②, and
③ are given by s1 = t1 � t0, s2 = t2 � t1, s3 = t3 � t2,
respectively. The total duration is given by
T = t3 � t1 = s1 + s2 + s3, and the following relationships
are satisfied:

xnuts1 ¼ xnuts3 ¼ p
2

xnuts2 ¼ b

xnutT ¼ pþ b;

(85)

where xnut is the ideal nutation frequency of the rf field
during the composite pulse.
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4.2.1 | Hamiltonian

If we consider again a single I-spin system, its Hamiltonian
at time point t in the presence of the Zeeman interaction
and the interaction with the rf field during the composite
pulse, including an rf frequency offset, in the high-field
approximation and in the rotating reference frame is given
by, according to Equation 21:

HðtÞ ¼ xnutðIx cos/ðtÞ þ Iy sin/ðtÞÞ þ DIz
¼ xnutRzð/ðtÞÞIxRzð�/ðtÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HAðtÞ
þ DIz|{z}
HBðtÞ

; (86)

where Δ is the rf resonance frequency offset, and /(t) is
the rf phase at time point t during the composite pulse.
In the last line we have split the Hamiltonian into two
parts, HA(t) is the time-dependent Hamiltonian of the
interaction with the ideal rf field and HB(t) is the time-
independent Hamiltonian of the rf resonance offset. If the
ratio D/xnut is relatively small, it is helpful to transform
H(t), and hence HB(t), into the interaction frame of HA(t)
as discussed in Section 3.2. Since HA(t) is Hamiltonian
of the interaction with the on-resonance rf field, the
interaction frame in this case is also referred to as the
“toggling frame” as discussed in Section 3.2. In order to
achieve the transformation, in a first step we list HA(t)
and HB(t) during the different pulse sequence blocks ①,
② and ③:

HAðtÞ ¼ xnutIy for t0 � t\t1 or t2 � t� t3
xnutIx for t1 � t\t2

	
(87)

and

HBðtÞ ¼ DIz for t0 � t� t3 (88)

4.2.2 | Rf propagator

In a second step we need to calculate the propagator UA(t,
t0) for the Hamiltonian that solves the Schr€odinger equa-
tion (Equation 50) of the Hamiltonian HA(t). The propaga-
tor during the three time blocks ①, ② and ③ is given
by:

UAðt; t0Þ ¼
Ry xnutðt � t0Þð Þ for t0 � t\t1
Rx xnutðt � t1Þð ÞRy

p
2

� �
for t1 � t\t2

Ry xnutðt � t2Þð ÞRx bð ÞRy
p
2

� �
for t2 � t� t3.

8<
:

(89)

Note again how the propagators accumulate from right
to left in the second and third line, see also Equation 4. As
in Section 4.1.2 we use the relationships b�ðtÞ ¼
xnutðt � t0Þ, b`ðtÞ ¼ xnutðt � t1Þ and b´ðtÞ ¼ xnutðt � t2Þ
to simplify the propagator expression:

UAðt; t0Þ ¼
Ry b�ðtÞð Þ for t0 � t\t1
Rx b`ðtÞð ÞRy

p
2

� �
for t1 � t\t2

Ry b´ðtÞ þ p
2

� �
Rz bð Þ for t2 � t� t3,

8<
: (90)

where we used in the last line the transformation

RxðbÞRy
p
2

� �
¼ Ry

p
2

� �
Ry � p

2

� �
RxðbÞRy

p
2

� �
¼ Ry

p
2

� �
RzðbÞ:
(91)

In order to transform the Hamiltonian into the interac-
tion frame we also need to calculate the adjoint of the rf
propagator:

Uy
Aðt; t0Þ ¼

Ry �b�ðtÞð Þ for t0 � t\t1
Ry � p

2

� �
Rx �b`ðtÞð Þ for t1 � t\t2

Rz �bð ÞRy �b´ðtÞ � p
2

� �
for t2 � t� t3.

8<
:

(92)

4.2.3 | Interaction frame Hamiltonian

We can now employ the rf propagator UA(t, t0) calculated
in the previous section to transform the Hamiltonian into
the interaction frame of HA(t) (“toggling frame”) according
to Equation 56:

~HBðtÞ ¼

Ry �b�ðtÞð ÞDIzRy b�ðtÞð Þ for t0 � t\t1
Ry � p

2

� �
Rx �b`ðtÞð Þ

� DIzRx b`ðtÞð ÞRy
p
2

� �
for t1 � t\t2

Rz �bð ÞRy �b´ðtÞ � p
2

� �
� DIzRy b´ðtÞ þ p

2

� �
Rz bð Þ for t2 � t� t3.

8>>>>><
>>>>>:

(93)

The first rotations around the y- and x-axis in the first
and second line, respectively, of Equation 93 are relatively
straightforward to execute, whereas in the case of the last
row we use the relationships cos p

2 þ x
� � ¼ � sin x and

sin p
2 þ x
� � ¼ cos x after the y-rotation:

~HBðtÞ ¼

D Iz cos b�ðtÞ � Ix sinb�ðtÞf g for t0 � t\t1
DRy � p

2

� �
Iz cos b`ðtÞf

þ Iy sin b`ðtÞgRy
p
2

� �
for t1 � t\t2

DRz �bð Þ �Iz sin b´ðtÞf
� Ix cos b´ðtÞgRz bð Þ for t2 � t� t3.

8>>>>><
>>>>>:

(94)

Finally, the remaining rotations in the second and last
line are carried out:

~HBðtÞ ¼

D Iz cosb�ðtÞ� Ix sinb�ðtÞf g for t0� t\t1

D �Ix cosb`ðtÞþ Iy sinb`ðtÞ
� �

for t1� t\t2
D �Iz sinb´ðtÞf
þ Iy sinb� Ix cosb
� �

cosb´ðtÞg for t2� t� t3.

8>>><
>>>:

(95)

16 of 19 | BRINKMANN



This result is more complicated than the one we got in
Section 4.1.3, here the resulting interaction frame Hamilto-
nian is not piecewise time-independent during the different
pulse blocks.

4.2.4 | First order average Hamiltonian

With the help of the interaction frame Hamiltonian in
Equation 95, we can now calculate the first order average
Hamiltonian according to Equation 30:

�Hð1Þ
B ¼ 1

T

Zt3
t0

dt ~HðtÞ

¼ 1
pþ b

(Zp
2

0

db� ~H�
B

�
b�

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}R

�

þ
Zb

0

db` ~H`
B

�
b`

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}R

`

þ
Zp

2

0

db´ ~H´
B

�
b´

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}R

´

)
;

(96)

where we have substituted the integration over the time
variable t with the integration over the flip angles b�, b`
and b´ during the three blocks ①, ②, and ③, respec-
tively. Hence, the normalizing by the total duration T is
replaced by the normalization by the sum of the flip angles
p + b of the composite pulse. In addition, we have used
the shorthand notations ~H�

B ðb�Þ, ~H`
B ðb`Þ and ~H´

B ðb´Þ
for the interaction frame Hamiltonians during the different
blocks in Equation 95. The three integrals

R
�,

R
` and

R
´

can be solved separately:

R
� ¼ D

�
Iz sin b� þ Ix cos b�

�p
2

0

¼ D Iz � Ixf gR
` ¼ D

�
�Ix sin b` � Iy cos b`

�b
0

¼ D �Ix sin bþ Iyð1� cos bÞ� �
R
´ ¼ D

�
Iz cos b´ þ Iy sin b� Ix cos b

� �
sin b´

�p
2

0

¼ D �Iz þ Iy sin b� Ix cos b
� �

;

(97)

which finally leads to the first order average Hamiltonian

�Hð1Þ
B ¼ D

pþb
�Ixð1þ sinbþ cosbÞþ Iyð1� cosbþ sinbÞ� �

:

(98)

The goal of this section is to choose the flip angle b of
pulse ② such that the resulting composite pulse is compen-
sated for rf frequency offsets in first order average Hamil-
tonian theory. This would imply we would like to achieve
that �Hð1Þ

B is zero for our choice of b:

�Hð1Þ
B ¼ 0 if

1þ sinbþ cosb¼ 0 , sinb¼�1
^ 1� cosbþ sinb¼ 0 ^ cosb¼ 0

(99)

The simple equation system in the right column of
Equation 99 is solved straightforwardly by 3p/2 plus any
multiple of 2p. We can summarize this condition in the fol-
lowing equation:

�Hð1Þ
B ¼ 0 if b ¼ 3p

2
þ Z2p; where Z is any integer

(100)

Hence, for example the 90y270x90y composite pulse
would be an inversion pulse that is compensated with
respect to rf frequency offsets. However, we need to care-
fully check whether the 90y270x90y composite pulse actu-
ally is equivalent to a 180x pulse under ideal circumstances
(no rf offset). As it is proven in Appendix A this is not the
case, rather it is equivalent to a 180�45 pulse. However, as
a result, the 901352704590135 composite pulse is indeed
equivalent to a 180x pulse.

In Figure 10 the operation of the 901352704590135 compos-
ite pulse is demonstrated by following the trajectories of z-, x-,
and y-magnetization during the composite pulse in the pres-
ence of a relative rf frequency offset of D/xnut = 10%. The tra-
jectories shown in first row (A) start with the density operator
q0 = Iz, corresponding to z-magnetization. The left panel
shows that a single 180x pulse cannot perfectly invert the z-
magnetization vector due to rf offset. The exact trajectory of
the magnetization vector during the 901352704590135 pulse
shown in the middle panel is very interesting and leads to a
completely inverted z-magnetization vector. The propagator of
the 901352704590135 composite pulse corresponds to a Rx(p)
rotation operator in first order average Hamiltonian theory,
hence z-magnetization is perfectly inverted in first order aver-
age Hamiltonian theory as depicted in the right panel.

The second row (B) in Figure 10 shows the trajectories of
x-magnetization. The presence of the rf frequency offset
causes the single 180x pulse to lift the final position of the x-
magnetization vector slightly above the x-axis, shown on the
left. The exact trajectory of the x-magnetization during the
901352704590135 composite pulse is quite complicated, but
nevertheless leads right back onto the x-axis, as expected for
a pulse compensated for rf frequency offsets, as shown in the
middle panel. Since in first order average Hamiltonian the-
ory, the 901352704590135 composite pulse is identical to a
180x pulse, even in the presence of rf frequency offsets, the
x-magnetization vector remains in its position.

Finally, the last row (C) in Figure 10 depicts the differ-
ent trajectories of a starting Iy density operator, correspond-
ing to y-magnetization. As shown in the left panel, in spite
of the rf offset the trajectory during the single 180x pulse
follows closely one without rf offset. As expected, the
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901352704590135 composite pulse inverts perfectly the y-
magnetization vector in the presence of a small rf offset, as
does the propagator Rx(p) of the composite pulse in first
order average Hamiltonian theory, shown in the middle and
right panels, respectively.

5 | CONCLUDING REMARKS

In this first part of our introduction to average Hamiltonian
theory, our goal was to introduce the basics of this topic in a
comprehensive but rigorous fashion. The two composite
pulses were chosen as examples to familiarize the reader with
applying the concept of the interaction frame and the Magnus
expansion in practice. The reader is encouraged to consult
Ed�en’s recent educational papers in this journal on the Zeeman

truncation in NMR for another important example of applying
average Hamiltonian theory in the interaction frame.38,39

Finally, part II of this introduction to average Hamiltonian the-
ory will cover more advanced examples, such as dipolar
recoupling and homonuclear decoupling in solid-state NMR,
of the application of average Hamiltonian theory in NMR.
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APPENDIX A

PROOF REGARDING COMPOSITE PULSE

In the following, we present the proof that the 90y270x90y composite pulse is equivalent to a 180�45 pulse:
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2


 �
Ry

p
2

� �
¼ Ry

p
2

� �
Rx

p
4

� �
Rx pð ÞRx

p
4

� �
Ry

p
2

� �
¼ Ry

p
2

� �
Rx

p
4

� �
Rx pð ÞRy

p
2

� �
Ry � p

2

� �
Rx

p
4

� �
Ry

p
2

� �
¼ Ry

p
2

� �
Rx

p
4

� �
Rx pð ÞRy

p
2

� �
Rx �pð ÞRx pð ÞRy � p

2

� �
Rx

p
4

� �
Ry

p
2

� �
¼ Ry

p
2

� �
Rx

p
4

� �
Ry � p

2

� �
Rx pð ÞRy � p

2

� �
Rx

p
4

� �
Ry

p
2

� �
¼ Rz � p

4

� �
Rx pð ÞRz

p
4

� �
: (101)
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