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A B S T R A C T

Where the first part of our tutorial Introduction to average Hamiltonian theory (Brinkmann, 2016) introduced
in detail the basic concepts and demonstrated the application to two composite radio-frequency (rf) pulses
in nuclear magnetic resonance (NMR) spectroscopy, this second part will present in a comprehensive but
educational manner two, more advanced examples for the application of average Hamiltonian theory in
solid-state NMR spectroscopy, both to analyse and design rf pulse sequences: (i) The Rotational-Echo Double
Resonance (REDOR) sequence, which recouples the heteronuclear dipolar coupling during sample rotation
around an axis at the magic-angle of 54.74◦ with respect to the external static magnetic field. We will gradually
increase the complexity of applying average Hamiltonian theory by first considering ideal, infinitesimally short
rf pulses. Next, we will examine finite pulses with an rf phase of zero, and finally, we will explore finite pulses
with arbitrary rf phases. In the latter case, if a first order average Hamiltonian proportional to heteronuclear
longitudinal two-spin order (2𝐼𝑧𝑆𝑧) is desired, solutions for the choice of rf phases include the XY and MLEV
type schemes. (ii) The Lee–Goldburg homonuclear dipolar decoupling sequence under static samples conditions
and its improved successors, Flip-Flop Lee–Goldburg (FFLG) and Frequency-Switched Lee–Goldburg (FSLG).
1. Introduction

This tutorial paper is the second part of the Introduction to aver-
age Hamiltonian theory. It continues seamlessly where the first part
left off [1]. It focusses on two, more advanced examples for the ap-
plication of average Hamiltonian theory in solid-state nuclear mag-
netic resonance (NMR) spectroscopy both to analyse and design radio-
frequency (rf) pulse sequences: (i) The REDOR pulse sequence [2,
3] that achieves the recoupling of the heteronuclear dipolar coupling
during magic-angle spinning (MAS) of the sample by suspending the
averaging of the interaction by the sample rotation; (ii) The orig-
inal Lee-Goldburg (LG) sequence [4,5] and its improvements Flip-
Flop Lee-Goldburg (FFLG) [6,7] and Frequency-Switched Lee-Goldburg
(FSLG) [8,9] that all achieve decoupling of the homonuclear dipolar
coupling. These pulse sequences are examples of the vast number of
decoupling and recoupling pulse sequences that have been developed
over the last decades both for solution and solid-state NMR spec-
troscopy often with the help of average Hamiltonian theory [10–19]. In
Part I, we discussed several alternative approaches for approximating
solutions to the time-dependent Schrödinger equation for a spin system
in the presence of rf pulses. These approaches include Floquet the-
ory [20–22], the Fer expansion [23,24], and, more generally, numerical
simulations [25–27].

As this tutorial paper continues Part I of the Introduction to average
Hamiltonian theory, the fundamentals of quantum mechanics and av-
erage Hamiltonian theory that were presented in detail in there will
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not be repeated here, rather the reader is encouraged to consult Part
I in parallel while reading Part II. Cross references to equations and
sections in Part I will be indicated by the prefix ‘‘I-’’. For example, ‘‘Eq.
(I-1)’’ and ‘‘section I-2.1’’ refer to Eq. (1) and Section 2.1 in Part I of
the Introduction to average Hamiltonian theory [1].

The advanced examples in this paper are based on educational
lectures on average Hamiltonian theory presented at different NMR
conferences and solid-state NMR summerschools. In Section 2 of this
tutorial first order average Hamiltonian theory is used to describe the
REDOR heteronuclear recoupling sequences for three cases, gradually
increasing in difficulty: (i) using ideal (infinitesimal short) rf pulses in
Section 2.2, (ii) employing finite rf pulses with all rf phases set to zero
in Section 2.3, and (iii) applying finite rf pulses with arbitrary rf phases
in Section 2.4. Finally, in Section 3 the LG homonuclear decoupling
sequence and its improvements FFLG and FSLG are analysed in first
and second order average Hamiltonian theory

2. Rotational-Echo Double Resonance (REDOR)

2.1. Heteronuclear dipolar coupling

2.1.1. Hamiltonian in static solids
As described in detail in Appendix C.8.2 The nuclear spin Hamil-

tonian of the direct heteronuclear dipolar coupling in static solids
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Fig. 1. (A) Visualization of two heteronuclear dipolar coupled spins 𝐼 and 𝑆, where
the principal axis system 𝑃 𝐼 𝑆 and laboratory reference frame 𝐿 are depicted together
with the Euler angles 𝛺𝐼 𝑆

𝑃 𝐿 relating the two reference frames. (B) Illustration of a
heteronuclear dipolar coupled spin pair in an MAS NMR rotor together with the relevant
reference frames, and connecting Euler angles.

between two nuclear spins 𝐼 and 𝑆 in the high-field approximation
and in the interaction frame of the Zeeman interaction (i. e. the rotating
frame, see section I-3.2), can be written in the following way:

𝐻DD
𝐼 𝑆 = 𝜔DD

𝐼 𝑆 2𝐼𝑧𝑆𝑧, (1)

where the time-independent dipolar frequency 𝜔DD
𝐼 𝑆 is obtained by

transforming the tensor of the heteronuclear dipolar coupling from the
principle axis system (PAS) denoted 𝑃 𝐼 𝑆 to the laboratory frame 𝐿 as
shown in Fig. 1(A):
𝜔DD
𝐼 𝑆 = 𝑏𝐼 𝑆 𝐷(2)

00
(

𝛺𝐼 𝑆
𝑃 𝐿

)

= 𝑏𝐼 𝑆 𝑑(2)00
(

𝛽𝐼 𝑆𝑃 𝐿
)

= 𝑏𝐼 𝑆 1
2
(

3 cos2 𝛽𝐼 𝑆𝑃 𝐿 − 1) (2)

where the Euler angles 𝛺𝐼 𝑆
𝑃 𝐿 = {𝛼𝐼 𝑆𝑃 𝐿, 𝛽𝐼 𝑆𝑃 𝐿, 𝛾𝐼 𝑆𝑃 𝐿} define the relative orien-

tation of the PAS and the laboratory frame. If we consider a powdered
sample the Euler angles 𝛺𝐼 𝑆

𝑃 𝐿 are random variables, i. e. all possible
orientations occur with equal probability. The only relevant angle 𝛽𝐼 𝑆𝑃 𝐿
here encloses the internuclear vector between spins 𝐼 and 𝑆 and the
external static magnetic field 𝐵0. 𝐷

(𝑙)
𝑚𝑚′ and 𝑑(𝑙)𝑚𝑚′ are the elements of

the Wigner D-matrix and the Wigner d-matrix, respectively [25,28]. At
the magic angle 𝜃 = ar ct an

√

2 ≈ 54.74◦ the Wigner d-matrix element
𝑑(2)00 vanishes, i. e. 𝑑(2)00 (𝜃) = (3 cos2 𝜃 − 1)∕2 = 0. A more general
discussion of suitable reference frames in solid-state NMR can be found
in Appendix C.3.

As defined in Appendix C.8.2, the heteronuclear dipolar coupling
constant 𝑏𝐼 𝑆 is given by

𝑏𝐼 𝑆 = − 𝜇0
4𝜋

𝛾𝐼 𝛾𝑆ℏ
𝑟3𝐼 𝑆

, (3)

where in the Appendix examples of typical heteronuclear dipolar cou-
pling constants are given, which are also depicted in Fig. 2.

2.1.2. Hamiltonian under magic-angle spinning
In magic-angle spinning (MAS) NMR the sample is rapidly rotated

around an axis at the magic-angle of 54.74◦ with respect to the ex-
ternal static magnetic field. This is depicted in Fig. 1(B). In this case
the Hamiltonian of the heteronuclear dipolar coupling becomes time
dependent:

𝐻DD
𝐼 𝑆 (𝑡) = 𝜔DD

𝐼 𝑆 (𝑡) 2𝐼𝑧𝑆𝑧, (4)

where the time-dependent dipolar frequency 𝜔DD
𝐼 𝑆 (𝑡) is again obtained

by transforming the tensor of the heteronuclear dipolar coupling from
the PAS 𝑃 𝐼 𝑆 to the laboratory frame 𝐿. However, it is useful to
2 
Fig. 2. Examples of homo- and heteronuclear dipolar coupling constants 𝑏12 between
two spins labelled 1 and 2 are depicted. The examples correspond to typical one-
bond internuclear distances (13C–15N,13C–13C, 15N–1H and 13C–1H) and the 1H⋯1H
internuclear distance in a CH2 group.

introduce an intermediate step the transformation into the rotor frame
𝑅 as shown in Fig. 1(B):

𝜔DD
𝐼 𝑆 (𝑡) = 𝑏𝐼 𝑆

2
∑

𝑚=−2
𝐷(2)

0𝑚
(

𝛺𝐼 𝑆
𝑃 𝑅

)

𝐷(2)
𝑚0
(

−𝜔𝑟𝑡, 𝜃 , 0
)

, (5)

where the Euler angles 𝛺𝐼 𝑆
𝑃 𝑅 = {𝛼𝐼 𝑆𝑃 𝑅, 𝛽𝐼 𝑆𝑃 𝑅, 𝛾𝐼 𝑆𝑃 𝑅} define the relative

orientation of the PAS and the rotor frame. In powdered samples
the Euler angles 𝛺𝐼 𝑆

𝑃 𝑅 are random variables. The Euler angles 𝛺𝑅𝐿 =
{−𝜔𝑟𝑡, 𝜃 , 0} describe the transformation from the rotor frame to the
laboratory frame, where 𝜔𝑟 is the sample spinning frequency and 𝜃 =
ar ct an

√

2 ≈ 54.74◦ is the magic angle enclosing the rotation axis and the
external static magnetic field [14,19,25,29]. A more general discussion
of the transformations into suitable reference frames for the description
of MAS experiments can be found in Appendix C.10.

Using the definition of the Wigner D-matrix [25,28], the time-
dependent dipolar frequency may be further simplified:

𝜔DD
𝐼 𝑆 (𝑡) =

2
∑

𝑚=−2

1
2
𝛺(𝑚) exp

{

i𝑚(𝜔𝑟𝑡 − 𝛾𝐼 𝑆𝑃 𝑅)
}

=
2
∑

𝑚=1
𝛺(𝑚) cos

(

𝑚(𝜔𝑟𝑡 − 𝛾𝐼 𝑆𝑃 𝑅)
)

= 𝜔(1)(𝑡) + 𝜔(2)(𝑡), (6)

where the time-dependent and time-independent dipolar frequency
coefficients 𝜔(𝑚)(𝑡) and 𝛺(𝑚) have been introduced, respectively. The
sum over 𝑚 = −2,−1, 0, 1, 2 has been replaced by the sum over 𝑚 = 1, 2,
where the property 𝑑(2)00 (𝜃) = (3 cos2 𝜃 − 1)∕2 = 0 for 𝜃 = ar ct an

√

2 ≈
54.74◦ has been exploited. The real coefficients 𝜔𝑚(𝑡) and 𝛺𝑚 are
defined as

𝛺(𝑚) = 2 𝑏𝐼 𝑆 𝑑(2)0𝑚
(

𝛽𝐼 𝑆𝑃 𝑅
)

𝑑(2)𝑚0(𝜃) (7)

𝜔(𝑚)(𝑡) = 𝛺(𝑚) cos
(

𝑚(𝜔𝑟𝑡 − 𝛾𝐼 𝑆𝑃 𝑅)
)

(8)

with 𝛺(−𝑚) = 𝛺(𝑚) and 𝜔(−𝑚) = 𝜔(𝑚). For 𝑚 = 1, 2 these coefficients are
explicitly given by:

𝛺(1) = − 1
√

2
𝑏𝐼 𝑆 sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

𝛺(2) = 1
2
𝑏𝐼 𝑆 sin2

(

𝛽𝐼 𝑆𝑃 𝑅
)

(9)

𝜔(1)(𝑡) = 𝛺(1) cos
(

𝜔𝑟𝑡 − 𝛾𝐼 𝑆𝑃 𝑅
)

𝜔(2)(𝑡) = 𝛺(2) cos
(

2(𝜔𝑟𝑡 − 𝛾𝐼 𝑆𝑃 𝑅)
)

. (10)

Fig. 3 shows the time dependence of the dipolar frequencies 𝜔(1)(𝑡) and
𝜔(2)(𝑡) for a single crystallite orientation, i. e. for a single specific set of
Euler angles 𝛺𝐼 𝑆

𝑃 𝑅 = {𝛼𝐼 𝑆𝑃 𝑅, 𝛽𝐼 𝑆𝑃 𝑅, 𝛾𝐼 𝑆𝑃 𝑅}, over two rotational periods. 𝜔(1)(𝑡)
is periodic with a single rotor period 𝜏𝑟 = 2𝜋∕𝜔𝑟, whereas 𝜔(2)(𝑡) is
periodic with half a rotor period 𝜏𝑟∕2. Furthermore, the ratio of the
amplitudes of 𝜔(1)(𝑡) and 𝜔(2)(𝑡) is given by

√

2. The following time
symmetries can be derived from Eq. (10):

𝜔(1)(𝑡 +
𝜏𝑟
2
) = −𝜔(1)(𝑡) 𝜔(2)(𝑡 +

𝜏𝑟
2
) = 𝜔(2)(𝑡) (11)

𝜔(1)(𝑡 + 𝜏𝑟) = 𝜔(1)(𝑡) 𝜔(2)(𝑡 + 𝜏𝑟) = 𝜔(2)(𝑡) (12)
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Fig. 3. Time dependence of the heteronuclear dipolar coupling under MAS. Two
rotational periods and the corresponding positions of the rotor are depicted on the
top. The evolution of the dipolar frequency coefficients 𝜔(1)(𝑡) and 𝜔(2)(𝑡) as a function
of time is shown in panels (A) and (B), respectively.

2.1.3. Propagator
As depicted in Fig. I-1, in order to calculate the evolution of a spin-

system ensemble from time point 𝑡𝑎 = 0 to time point 𝑡𝑏 = 𝑡 under the
heteronuclear dipolar coupling Hamiltonian 𝐻DD

𝐼 𝑆 (𝑡) defined in Eq. (4)
during an MAS experiment, the propagator 𝑈 (𝑡, 0) needs to be deter-
mined by solving the Schrödinger equation (I-5) for the propagator.
Although, the Hamiltonian 𝐻DD

𝐼 𝑆 (𝑡) is time-dependent, it commutes with
itself at all time points in the interval [0, 𝑡]. As discussed in section I-2.2
and depicted in the flowchart Fig. I-2 this is the inhomogeneous case in
the sense of Maricq and Waugh [30], and the propagator for a single
crystallite orientation 𝛺𝐼 𝑆

𝑃 𝑅 can be derived analytically according to Eq.
(I-8):

𝑈 (𝑡, 0) = exp
{

−i∫

𝑡

0
d𝑡′ 𝐻DD

𝐼 𝑆 (𝑡′)
}

= exp
{

−i 2 𝐼𝑧𝑆𝑧 ∫
𝑡

0
d𝑡′ 𝜔DD

𝐼 𝑆 (𝑡′)
}

= exp{−i 2 𝐼𝑧𝑆𝑧𝛷(𝑡, 0)
}

, (13)

where the phase 𝛷(𝑡, 0) has been introduced:

𝛷(𝑡, 0) = ∫

𝑡

0
d𝑡′ 𝜔DD

𝐼 𝑆 (𝑡′)

= ∫

𝑡

0
d𝑡′

{

𝜔(1)(𝑡) + 𝜔(2)(𝑡)
}

=
𝑏𝐼 𝑆
2𝜔𝑟

{

− 2
√

2 sin(2𝛽𝐼 𝑆𝑃 𝑅
)

cos
(𝜔𝑟𝑡

2
− 𝛾𝐼 𝑆𝑃 𝑅

)

sin
(𝜔𝑟𝑡

2

)

+ sin2(𝛽𝐼 𝑆𝑃 𝑅
)

cos
(

𝜔𝑟𝑡 − 2𝛾𝐼 𝑆𝑃 𝑅
)

sin
(

𝜔𝑟𝑡
)

}

(14)

Consider two spin-1∕2 nuclei 𝐼 and 𝑆 during an MAS experiment,
evolving under the heteronuclear dipolar coupling Hamiltonian Eq. (4).
3 
Furthermore, assume they are prepared such that the initial density
operator at time point 𝑡𝑎 = 0 is given by 𝐼-spin 𝑥-magnetization, i. e.
𝜌(0) = 𝐼𝑥. With the help of the propagator Eq. (13) the density operator
at a later time point 𝑡𝑏 = 𝑡 can be calculated using Eq. (I-12):
𝜌(𝑡) = 𝑈 (𝑡, 0) 𝜌(0)𝑈†(𝑡, 0)

= exp{−i 2 𝐼𝑧𝑆𝑧𝛷(𝑡, 0)
}

𝐼𝑥 exp
{

i 2 𝐼𝑧𝑆𝑧𝛷(𝑡, 0)
}

= 𝐼𝑥 cos
(

𝛷(𝑡, 0)
)

+ 2𝐼𝑦𝑆𝑧 sin
(

𝛷(𝑡, 0)
)

, (15)

where we have used the property of spin-1∕2 nuclei that in the (𝐼𝑥, 2𝐼𝑦𝑆𝑧,
2𝐼𝑧𝑆𝑧) operator subspace, the heteronuclear longitudinal two-spin order
operator 2𝐼𝑧𝑆𝑧 induces a rotation in the (𝐼𝑥, 2𝐼𝑦𝑆𝑧)-plane [31,32].

The time-dependent 𝐼-spin NMR signal 𝑆(𝑡;𝛺𝐼 𝑆
𝑃 𝑅) for a single crys-

tallite orientation 𝛺𝐼 𝑆
𝑃 𝑅 can be obtained by calculating the normalized

trace of the product of the density operator 𝜌(𝑡) and the signal detection
operator 𝐼+:

𝑆(𝑡;𝛺𝐼 𝑆
𝑃 𝑅) =

Tr
{

𝐼+𝜌(𝑡)
}

Tr
{

𝐼2𝑥
}

= cos(𝛷(𝑡, 0)). (16)

In a powder sample the final 𝐼-spin signal is obtained by averaging over
all possible orientations 𝛺𝐼 𝑆

𝑃 𝑅:

𝑆(𝑡) =
⟨

cos
(

𝛷(𝑡, 0)
)

⟩

𝛺𝐼 𝑆𝑃 𝑅
(17)

Fig. 4 shows examples of the calculated time-dependent 𝐼-spin signal
𝑆(𝑡), or free induction decay (FID) and its Fourier transformed spectrum
𝑆(𝛺) for a two (𝐼 , 𝑆)-spin system in a powdered sample with a
heteronuclear dipolar coupling constant of 𝑏𝐼 𝑆∕2𝜋 = 950 Hz, which
corresponds to a typical 13C–15N internuclear distance of 147.7 pm.
The first column shows the first 20 ms of the FID without any additional
line-broadening applied, whereas the second column shows the full FID
used for Fourier transformation, where additional line broadening has
been applied. The bottom row (J)–(L) shows the results for a static
sample, in which case the spectrum (L) shows the typical Pake doublet
or Pake pattern of a heteronuclear dipolar coupled spin-1∕2 [33]. The
distance between the two inner discontinuities is equal to the dipolar
coupling constant 𝑏𝐼 𝑆∕2𝜋.

The remaining rows in Fig. 4 show from bottom to top results
calculated under MAS with increasing spinning frequencies of 100,
400 and 4000 Hz, respectively. At 100 Hz MAS frequency 𝜔𝑟 ≪ 𝑏𝐼 𝑆
applies, and the time signal 𝑆(𝑡) depicted in (G) and (H) shows pro-
nounced rotational echoes occurring every rotational period 𝜏𝑟. During
each rotational period the signal 𝑆(𝑡) is strongly modulated by the
heteronuclear diplar coupling through the phase 𝛷(𝑡, 0) in Eq. (14). The
rotational echoes translate into spinning sidebands in the spectrum 𝑆(𝛺)
shown in (J) separated by the sample spinning frequency and centred
around the centerband at 0 as no 𝐼-spin isotropic chemical shift has
been considered in these calculations. It should be noted that although
the pattern of the sidebands resembles the static Pake pattern the
match is not exact, especially with increasing spinning frequencies. The
amplitudes of the spinning sidebands can be determined by expanding
Eq. (16) together with Eq. (14) in a Fourier series of the spinning
frequency 𝜔𝑟 and calculating the Fourier coefficients [29].

At MAS frequency of 400 Hz, 𝜔𝑟 < 𝑏𝐼 𝑆 applies, where 𝑏𝐼 𝑆∕𝜔𝑟 is
in the order of 2. The rotational echoes in 𝑆(𝑡) move closer together
in time as 𝜏𝑟 decreases as can be seen in panels (D) and (E), and less
signal modulation occurs during each rotational period. The spectrum
𝑆(𝛺) shown in (F) contains only a few sidebands, where the centerband
becomes the signal with the highest intensity.

Finally in the fast spinning regime at 4000 kHz MAS frequency is de-
picted in the top row (A)–(C). In this case 𝜔𝑟 ≫ 𝑏𝐼 𝑆 is valid, resulting in
a spectrum 𝑆(𝛺) showing solely the centerband at 0. Correspondingly,
no modulation due to the heteronuclear dipolar coupling is visible in
the time signal 𝑆(𝑡) shown in (A), the rotational echoes have merged
into a constant signal (if no additional line broadening is applied),
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Fig. 4. Calculated FIDs 𝑆(𝑡) (first two columns) and their corresponding Fourier
ransformed spectra 𝑆(𝛺) (last column) for a two (𝐼 , 𝑆)-spin system in a powdered

sample with a heteronuclear dipolar coupling constant of 𝑏𝐼 𝑆∕2𝜋 = 950 Hz. To the FIDs
𝑆(𝑡) shown in the first column no additional line broadening was applied, whereas to
the FIDs 𝑆(𝑡) shown in the second column 7.5 Hz exponential line broadening was
pplied. The results were calculated, from bottom to top, under static (J)–(L) and
AS conditions with spinning frequencies of (G)–(I): 100 Hz, (D)–(F): 400 Hz and (A)–

(C): 4000 Hz. All calculations were performed using the Mathematica [34] package
pinDynamica [35].

corresponding to an exponentially decaying signal in (B) if exponential
line broadening is used. The effect of the heteronuclear dipolar coupling
has been averaged out by the rapid sample spinning. All spectra 𝑆(𝛺)
in the right column of Fig. 4 indicate their individual scaling factor.
t is evident that MAS increases tremendously both the resolution and
ensitivity of the 𝐼-spin spectra.

2.1.4. Average Hamiltonian
For educational interest’s sake, average Hamiltonian theory may

be applied to the time-dependent periodic Hamiltonian Eq. (4) of the
heteronuclear dipolar coupling. Consulting the third column in Fig. (I-
) and section I-3.3, enables us to calculate the first order average
amiltonian for the heteronuclear dipolar coupling under MAS over
ne rotational period 𝑇 = 𝜏𝑟:

̄ 𝐷 𝐷(1)
𝐼 𝑆 = 1

𝜏𝑟 ∫

𝜏𝑟

0
d𝑡 𝐻𝐷 𝐷

𝐼 𝑆 (𝑡) = 2𝐼𝑧𝑆𝑧 1𝜏𝑟 ∫
𝜏𝑟

0
d𝑡 𝜔𝐷 𝐷

𝐼 𝑆 (𝑡) = 0 (18)

However, as discussed above, the heteronuclear dipolar coupling
Hamiltonian commutes with itself (and any chemical shift Hamiltonian)
at different time points. As a result, even all higher order average
Hamiltonians disappear over one rotational period [0, 𝜏 ] and the
𝑟

4 
Fig. 5. Principle of heteronuclear dipolar recoupling in MAS NMR.

overall effective Hamiltonian Eq. (I-29) is zero:

𝐻̄𝐷 𝐷
𝐼 𝑆 = 𝐻̄𝐷 𝐷(1)

𝐼 𝑆 + 𝐻̄𝐷 𝐷(2)
𝐼 𝑆 +⋯ = 0 (19)

As a result, the propagator over one rotational period is unity:

𝑈 (𝜏𝑟, 0) = 1 (20)

This result is not surprising, as evolution of the transverse 𝐼-spin
magnetization under the heteronuclear dipolar coupling is refocussed
at the end of each rotational period resulting in the rotational echoes
in the time signal 𝑆(𝑡) discussed in the previous section. This result also
highlights that average Hamilton theory can only be applied over mul-
tiples of the time period of the Hamiltonian, for example here multiples
of the rotational period 𝜏𝑟 under MAS. It does not allow for results to
be obtained at intermediate time points during the time period. Hence,
average Hamiltonian theory fails to predict the occurrence of spinning
sidebands in MAS spectra. However, as we will see in the following
section average Hamiltonian theory is a powerful tool to calculate the
density operator at multiples of the period of the basic building block
of an applied rf pulse sequence.

2.2. REDOR with ideal pulses

Most realistic applications of solid-state NMR in disordered solids
require MAS to attenuate the effects of the anisotropic spin interactions
in order to achieve high spectral resolution and sensitivity, as we
have seen by the example of the heteronuclear dipolar coupling in
the previous section. However, anisotropic spin interactions contain
nformation about the molecular structure, e. g., the direct dipolar
oupling depends upon the internuclear distance. Therefore, it is often
esirable to temporarily recouple certain anisotropic spin interactions
y applying pulse schemes of resonant rf fields to the nuclear spins, in
rder to suspend the averaging effect of the magic-angle rotation over
 limited time interval. This is depicted in Fig. 5 for the recoupling of

the heteronuclear dipolar coupling.
These rf schemes are called recoupling pulse sequences. The recou-

ling of dipolar couplings by rf pulse sequences is called dipolar recou-
ling, specifically homonuclear dipolar recoupling and heteronuclear dipo-
ar recoupling for the cases of homonuclear and heteronuclear dipolar
ouplings, respectively.

In general, to achieve heteronuclear dipolar recoupling in a het-
eronuclear two-spin system 𝐼 and 𝑆, an rf pulse sequence can be
pplied either to both spin species or to solely one of the two spin
pecies. The archetypal heteronuclear recoupling sequence in solid-
tate NMR that is applied to both spin species is the Hartmann-Hahn

cross polarization (CP) scheme [36,37], which is widely employed in
solid-state NMR for the enhancement of signals from nuclei with small
yromagnetic ratios and is an essential component of high-resolution

NMR in solids. The combination of CP and MAS is referred to as CP-
MAS [38,39]. Two of the most successful (and oldest) heteronuclear
ecoupling methods in MAS NMR that involve application of rf fields

to only one of the two spin species are rotary resonance recoupling
(R3) [40,41] and rotational-echo double-resonance NMR (REDOR) [2,
3]. In this section we will introduce the basic concept of REDOR
employing ideal rf pulses and describe in detail how to apply first-order
average Hamiltonian theory to understand how this pulse sequence
achieves heteronuclear dipolar recoupling under MAS. In the following
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Fig. 6. Rf pulse sequence that employs REDOR as heteronuclear recoupling sequence
while the abundant protons are decoupled.

section this will be extended to REDOR using (realistic) finite rf pulses
and the connection between REDOR and R3 will elucidated generalizing
previous work by Naito et al. [42] and Jaroniec et al. [43].

Fig. 6 shows a typical rf pulse sequence applied to a heteronuclear
𝐼 and 𝑆 spin system during MAS that employs REDOR as heteronuclear
recoupling sequence while the abundant protons are decoupled. A com-
mon case is represented by 𝑆 =13C and 𝐼 =15N. Firstly, enhanced 𝑆-spin
transverse magnetization is generated by transferring magnetization
from the protons by CP. Secondly, the 𝑆-spins are subjected to a spin-
echo of duration 𝜏 prior to the signal detection period, where 𝜏 is equal
to an even integer number of rotational periods, 𝜏 = 𝑁 𝜏𝑟. During the
spin-echo duration on the 𝐼-spins the REDOR recoupling sequence is
applied, in which discrete 180◦ pulses are applied every half rotational
period.

The essential building block of the REDOR sequence, two 180◦ pulse
every half rotational period, is shown in Fig. 7, where we first will
consider the case depicted in Fig. 7(A), i. e. assuming the 180◦ pulses
with phase 0 are ideal pulses that are infinitesimal short. The starting
time point of the sequence block is denoted 𝑡0, the time point of the
first and second 180𝑥 pulse are denoted 𝑡1 and 𝑡2, respectively, where
𝜏𝑟 = 𝑡2 − 𝑡0, 𝜏𝑟∕2 = 𝑡2 − 𝑡1 and 𝜏𝑟∕2 = 𝑡1 − 𝑡0.

2.2.1. Hamiltonian
Consider a heteronuclear two-spin system 𝐼 and 𝑆 in the presence

of the heteronuclear dipolar coupling and the REDOR pulse sequence
in Fig. 7(A) applied to the 𝐼-spins during MAS. In the high-field
approximation, the Hamiltonian at time point t is given by the sum
of the Hamiltonian 𝐻rf(𝑡), Eqs. (I-16) and (C.22), of the interaction of
the 𝐼-spins with the on-resonance rf field and the internal spin Hamil-
tonian 𝐻int(𝑡), see Appendix C.4. Since we are ultimately interested
to determine the spin-echo amplitude of the 𝑆-spins as a function of
the duration 𝜏 during which the REDOR sequence is applied, as shown
in Fig. 6, we need solely consider the Hamiltonian 𝐻DD

𝐼 𝑆 (𝑡), Eq. (4), of
the heteronuclear dipolar coupling as contribution to 𝐻int(𝑡), and may
ignore both the 𝐼- and 𝑆-spin chemical shifts:
𝐻(𝑡) = 𝐻rf(𝑡) +𝐻int(𝑡)

= 𝜔nut(𝑡) 𝐼𝑥
⏟⏞⏞⏟⏞⏞⏟
𝐻𝐴(𝑡)

+𝜔DD
𝐼 𝑆 (𝑡) 2𝐼𝑧𝑆𝑧

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝐻𝐵(𝑡)

, (21)

where a phase of 𝜙 = 0 was assumed for all rf pulses as shown in
Fig. 7(A). Furthermore, the Hamiltonian has been split into two parts
5 
Fig. 7. Building blocks of the REDOR sequence analysed by average Hamiltonian
theory in this paper, employing (A) ideal (infinitesimal short) 180𝑥 pulses, (B) finite
180𝑥 pulses, and (C) finite 180◦ pulses with arbitrary rf phases 𝜙1 ,… , 𝜙4.

𝐻𝐴(𝑡) and 𝐻𝐵(𝑡), which will allow to transform 𝐻(𝑡) into the interaction
frame of 𝐻𝐴(𝑡) before the application of average Hamiltonian theory
as described in section I-3.2. 𝐻𝐴(𝑡) = 𝐻rf(𝑡) corresponds to the time-
dependent Hamiltonian of the interaction with the rf field and 𝐻𝐵(𝑡) =
𝐻DD
𝐼 𝑆 (𝑡) is the time-dependent Hamiltonian of the heteronuclear dipolar

coupling. Both Hamiltonians are periodic in time with the rotational
period 𝜏𝑟:

𝐻𝐴(𝑡 + 𝜏𝑟) = 𝐻𝐴(𝑡) 𝐻𝐵(𝑡 + 𝜏𝑟) = 𝐻𝐵(𝑡) (22)

Hence, consulting the summary sheet of average Hamiltonian theory
Fig. I-7, we see that the steps outlined in the last column apply in this
case. For the different time periods during the REDOR pulse sequence
in Fig. 7(A) 𝐻𝐴(𝑡) and 𝐻𝐵(𝑡) are explicitly given by:

𝐻𝐴(𝑡) =
{

0 for 𝑡0 ≤ 𝑡 < 𝑡1 or 𝑡1 < 𝑡 < 𝑡2
𝜔∞

nut𝐼𝑥 for 𝑡 = 𝑡1 or 𝑡 = 𝑡2
(23)

and

𝐻𝐵(𝑡) =
{

𝜔DD
𝐼 𝑆 (𝑡) 2𝐼𝑧𝑆𝑧 for 𝑡0 ≤ 𝑡 < 𝑡1 or 𝑡1 < 𝑡 < 𝑡2

0 for 𝑡 = 𝑡1 or 𝑡 = 𝑡2,
(24)

where 𝜔∞
nut denotes the infinitely large rf nutation frequency of the

ideal pulses. In addition, as the pulses are considered to be ideal
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and infinitesimal short, the heteronuclear dipolar coupling is neglected
during the rf pulses.

2.2.2. Rf propagator
In order to transform the Hamiltonian 𝐻(𝑡) in Eq. (21) into the inter-

action frame of the rf field Hamiltonian 𝐻𝐴(𝑡), we need to calculate the
rf propagator solving the corresponding Schrödinger equation (I-50).
This is straightforward, as we have assumed ideal the rf pulses:

𝑈𝐴(𝑡, 𝑡0) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 for 𝑡0 ≤ 𝑡 < 𝑡1
𝑅𝑥(𝜋) for 𝑡 = 𝑡1
𝑅𝑥(𝜋) for 𝑡1 < 𝑡 < 𝑡2
𝑅𝑥(2𝜋) = −1 for 𝑡 = 𝑡2,

(25)

where 𝑅𝑥(𝛽) is the operator for the rotation of the 𝐼-spins through
the angle 𝛽 about the 𝑥-axis, as defined in section I-2.4. Note how the
propagators in the last row are the accumulated two 𝑅𝑥(𝜋) rotations.
For the transformation into the interaction frame, we also need to
alculate the adjoint of the rf propagator:

𝑈†
𝐴(𝑡, 𝑡0) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 for 𝑡0 ≤ 𝑡 < 𝑡1
𝑅𝑥(−𝜋) for 𝑡 = 𝑡1
𝑅𝑥(−𝜋) for 𝑡1 < 𝑡 < 𝑡2
−1 for 𝑡 = 𝑡2.

(26)

2.2.3. Interaction frame Hamiltonian
With the help of the rf propagators calculated in the previous sec-

ion, we can now transform the Hamiltonian 𝐻(𝑡) into the interaction
rame of 𝐻𝐴(𝑡) as shown in Eq. (I-56):
̃𝐵(𝑡) = 𝑈𝐴(𝑡, 𝑡0)†𝐻𝐵(𝑡)𝑈𝐴(𝑡, 𝑡0)

=

⎧

⎪

⎨

⎪

⎩

𝜔DD
𝐼 𝑆 (𝑡) 2𝐼𝑧𝑆𝑧 for 𝑡0 ≤ 𝑡 < 𝑡1

𝜔DD
𝐼 𝑆 (𝑡) 2𝑅𝑥(−𝜋)𝐼𝑧𝑅𝑥(𝜋)𝑆𝑧 for 𝑡1 < 𝑡 < 𝑡2

=

⎧

⎪

⎨

⎪

⎩

𝜔DD
𝐼 𝑆 (𝑡) 2𝐼𝑧𝑆𝑧 for 𝑡0 ≤ 𝑡 < 𝑡1

−𝜔DD
𝐼 𝑆 (𝑡) 2𝐼𝑧𝑆𝑧 for 𝑡1 < 𝑡 < 𝑡2.

(27)

2.2.4. First order average Hamiltonian and propagator
With the help of the interaction frame Hamiltonian in Eq. (27) we

can now calculate the first order average Hamiltonian according to Eq.
I-30):

̄ (1)
𝐵 = 1

𝑇 ∫

𝑡2

𝑡0
d𝑡 𝐻̃(𝑡)

= 𝜔̄(𝑧)
𝐼 𝑆 2𝐼𝑧𝑆𝑧 (28)

where we have introduced the time-independent amplitude 𝜔̄(𝑧)
𝐼 𝑆 of the

recoupled heteronuclear dipolar interaction proportional to the 𝐼𝑧𝑆𝑧
pin operator, which is given by

𝜔̄(𝑧)
𝐼 𝑆 = 1

𝜏𝑟

{

∫

𝑡1

𝑡0
d𝑡 𝜔DD

𝐼 𝑆 (𝑡) − ∫

𝑡2

𝑡1
d𝑡 𝜔DD

𝐼 𝑆 (𝑡)
}

= 1
𝜏𝑟 ∫

𝑡1

𝑡0
d𝑡
{

𝜔DD
𝐼 𝑆 (𝑡) − 𝜔DD

𝐼 𝑆 (𝑡 +
𝜏𝑟
2
)
}

= 2
𝜏𝑟 ∫

𝑡1

𝑡0
d𝑡 𝜔(1)(𝑡), (29)

where we have used the rotational symmetries Eqs. (11) and (12). We
an further simplify the result using the definition of 𝜔(1)(𝑡) in Eq. (10):

𝜔̄(𝑧)
𝐼 𝑆 = 𝛺(1) 2

𝜏𝑟 ∫

𝑡0+𝜏𝑟∕2

𝑡0
d𝑡 cos

(

𝜔𝑟𝑡 − 𝛾𝐼 𝑆𝑃 𝑅
)

= − 2
𝜋
𝛺(1) sin

(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

√

2 ( 𝐼 𝑆 ) ( 𝐼 𝑆 )
=
𝜋
𝑏𝐼 𝑆 sin 2𝛽𝑃 𝑅 sin 𝜔𝑟𝑡0 − 𝛾𝑃 𝑅 (30)

6 
As a result the first order average Hamiltonian in Eq. (28) is given by

𝐻̄ (1)
𝐵 =

√

2
𝜋
𝑏𝐼 𝑆 sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

2𝐼𝑧𝑆𝑧. (31)

We note here that not only is the amplitude of the first order average
Hamiltonian proportional to the dipolar coupling constant 𝑏𝐼 𝑆 but also
depends on the starting time point of the REDOR block 𝑡0. Therefore, if
the difference of the starting time points of the two periods of REDOR
irradiation on the 𝐼-spins during the 𝑆-spin-echo shown in Fig. 6 is
ot equal to an integer multiple of the rotation period 𝜏𝑟, the spin-

echo amplitude becomes encoded by the position of the rotor, the basis
of rotor-encoded spectroscopy introduced and extensively studied by the
group of Spiess [44,45]. This principle also can be used to scale the
ecoupled heteronuclear dipolar Hamiltonian [46].

The REDOR basic rf pulse sequence block depicted in Fig. 7 is cyclic,
therefore, the rf propagator over one rotational period is equal to unity,

𝑈𝐴(𝑡2, 𝑡0) = 𝑈𝐴(𝑡0 + 𝜏𝑟, 𝑡0) = −1, (32)

the propagator in first order average Hamiltonian theory over an
integer multiples of the rotational period 𝜏 = 𝑁 𝜏𝑟 of REDOR recoupling
as shown in Fig. 6 according to Eq. (I-70):
𝑈 (𝑡0 + 𝜏 , 𝑡0) = exp{−i𝐻̄ (1)

𝐵 𝜏}

= exp{−i 𝜔̄(𝑧)
𝐼 𝑆𝜏 2𝐼𝑧𝑆𝑧} (33)

As shown in Fig. 6 in an MAS experiment employing the REDOR
sequence, the 𝑆-spin-echo intensity is recorded as a function of the
uration 𝜏 during which the REDOR sequence is applied. The spin-echo

intensity for a single crystallite orientation as a function of 𝜏 is given
by:

𝑆(𝜏;𝛺𝐼 𝑆
𝑃 𝑅) =

Tr
{

𝐼𝑥 𝑈 (𝑡0 + 𝜏 , 𝑡0) 𝐼𝑥 𝑈†(𝑡0 + 𝜏 , 𝑡0)
}

Tr
{

𝐼2𝑥
}

= cos(𝜔̄(𝑧)
𝐼 𝑆𝜏

)

(34)

where in order to arrive at the result in Eq. (34) the same transforma-
ion steps were performed as to arrive at the results in Eqs. (15) and

(16). In a powder sample the final 𝑆-spin signal as a function of the
duration 𝜏 of the REDOR sequence is obtained by averaging over all
possible orientations 𝛺𝐼 𝑆

𝑃 𝑅:

𝑆(𝜏) =
⟨

cos
(

𝜔̄(𝑧)
𝐼 𝑆𝜏

)

⟩

𝛺𝐼 𝑆𝑃 𝑅
(35)

As discussed in Section 2.1.2 in a powdered sample the orientations
𝛺𝐼 𝑆
𝑃 𝑅 are random variables. The powdered averaging can be achieved

numerically by summing the intensities 𝑆(𝜏;𝛺𝐼 𝑆
𝑃 𝑅) for a single crys-

tallite orientation over a defined set of orientations 𝛺𝐼 𝑆
𝑃 𝑅 [27], or by

attempting to solve the following integral analytically:
⟨

…
⟩

𝛺𝐼 𝑆𝑃 𝑅
= 1

4𝜋 ∫

2𝜋

0
d𝛾𝐼 𝑆𝑃 𝑅 ∫

𝜋

0
d𝛽𝐼 𝑆𝑃 𝑅 sin 𝛽𝐼 𝑆𝑃 𝑅… (36)

Mueller et al. [47–49] elegantly expressed the solution to the integral
in Eqs. (35) and (36) with the help of Bessel functions:

𝑆(𝜏) = 𝜋

2
√

2
𝐽−1∕4

(
√

2
2𝜋

𝑏𝐼 𝑆 𝜏
)

𝐽1∕4

(
√

2
2𝜋

𝑏𝐼 𝑆 𝜏
)

, (37)

where 𝐽𝜈 (𝑧) denotes Bessel functions of the first kind with in general
nteger or fractional parameter 𝜈 and in general complex argument
[50,51].

Fig. 8 shows the result of calculating 𝑆(𝜏) for three different dipolar
oupling constants 𝑏𝐼 𝑆∕2𝜋 = 850, 950 and 1050 Hz, corresponding to

13C–15N internuclear distances of 153.3, 147.7 and 142.9 pm, respec-
tively. As the dipolar coupling constant increases, the extrema of the

odulation curve move closer together. This enables the determination
of internuclear distances and REDOR has been successfully applied
over the last 35 years to determine distances between a wide range
of pairs of different nuclei, including spin-1∕2 and quadrupolar nuclei
[13,52–55].
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Fig. 8. Calculated 𝑆-spin-echo amplitudes 𝑆(𝜏), Eq. (37), for different values of the
eteronuclear dipolar coupling constant 𝑏𝐼 𝑆∕2𝜋 as a function of the duration 𝜏 during
hich the REDOR sequence with ideal pulses is applied.

2.3. REDOR with finite pulses and rotary resonance recoupling

In the previous section we have discussed the REDOR sequence
employing ideal rf pulses in first order average Hamiltonian theory. In
his section, the goal is to extend this description to realistic, finite rf
ulses. The modified basic building block the REDOR pulse sequence

employing rf pulses of finite duration is shown in Fig. 7(B). The
uration and nutation frequency of the 180◦ rf pulses is denoted 𝜏𝑝

and 𝜔nut, respectively, and the following relation is fulfilled:

𝜔nut𝜏𝑝 = 𝜋 . (38)

It is useful to introduce the fraction 𝑓 of the total duration of the two
rf pulses and the rotational period:

𝑓 =
2𝜏𝑝
𝜏𝑟
, hence 0 ≤ 𝑓 ≤ 1 (39)

Furthermore, it will become useful to express both the pulse duration
𝜏𝑝 and the nutation frequency 𝜔nut as a function of the fraction 𝑓 and
he rotational period 𝜏𝑟 and the spinning frequency 𝜔𝑟:

𝜏𝑝 =
𝑓 𝜏𝑟
2

=
𝑓 𝜋
𝜔𝑟

and 𝜔nut =
2𝜋
𝑓 𝜏𝑟

=
𝜔𝑟
𝑓
, (40)

where the latter implies that 1∕𝑓 corresponds to the ratio of the
nutation frequency of the rf-field and the spinning frequency

Fig. 7(B) specifies in detail the labelling of time points 𝑡0 to 𝑡5
nd sequence segments 1⃝– 4⃝ during the basic building block of the

REDOR sequence employing finite rf pulses. For consistency with the
case of ideal rf pulses shown in Fig. 7(A), 𝑡0 is chosen as the reference
ime point. However, the average Hamiltonian and propagator will be
alculated over the interval [𝑡1, 𝑡5] with 𝜏𝑟 = 𝑡5 − 𝑡1. The following

equations, express the different time points 𝑡1 to 𝑡5 as a function of 𝑡0,
the rotational period 𝜏𝑟 and the fraction 𝑓 :

𝑡1 = 𝑡0 +
𝜏𝑝
2

= 𝑡0 + 𝑓
𝜏𝑟
4

(41)

𝑡2 = 𝑡0 +
𝜏𝑟
2

−
𝜏𝑝
2

= 𝑡0 +
𝜏𝑟
2

− 𝑓
𝜏𝑟
4

(42)

3 = 𝑡0 +
𝜏𝑟
2

+
𝜏𝑝
2

= 𝑡0 +
𝜏𝑟
2

+ 𝑓
𝜏𝑟
4

(43)

4 = 𝑡0 + 𝜏𝑟 −
𝜏𝑝
2

= 𝑡0 + 𝜏𝑟 − 𝑓
𝜏𝑟
4

(44)

𝑡5 = 𝑡0 + 𝜏𝑟 +
𝜏𝑝
2

= 𝑡0 + 𝜏𝑟 + 𝑓
𝜏𝑟
4

(45)

2.3.1. Hamiltonian
The Hamiltonians 𝐻𝐴(𝑡) and 𝐻𝐵(𝑡) in Eq. (21) during REDOR em-

ploying finite rf pulses can be written as

𝐻𝐴(𝑡) =
{

0 for 𝑡1 ≤ 𝑡 < 𝑡2 or 𝑡3 ≤ 𝑡 < 𝑡4 (46)

𝜔nut𝐼𝑥 for 𝑡2 ≤ 𝑡 < 𝑡3 or 𝑡4 ≤ 𝑡 ≤ 𝑡5

7 
and

𝐻𝐵(𝑡) = 𝜔DD
𝐼 𝑆 (𝑡) 2𝐼𝑧𝑆𝑧. (47)

2.3.2. Rf propagator
In a second step we need to calculate the propagator 𝑈𝐴(𝑡, 𝑡1) for the

f Hamiltonian 𝐻𝐴(𝑡) in Eq. (46). The propagator during the four time
blocks 1⃝– 4⃝ is given by:

𝑈𝐴(𝑡, 𝑡1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 for 𝑡1 ≤ 𝑡 < 𝑡2
𝑅𝑥

(

𝜔nut(𝑡 − 𝑡2)
)

for 𝑡2 ≤ 𝑡 < 𝑡3
𝑅𝑥(𝜋) for 𝑡3 ≤ 𝑡 < 𝑡4
𝑅𝑥

(

𝜔nut(𝑡 − 𝑡4)
)

𝑅𝑥(𝜋) for 𝑡4 ≤ 𝑡 ≤ 𝑡5.

(48)

It is helpful to introduce time-dependent nutation angles 𝛽 2⃝(𝑡) and
𝛽 4⃝(𝑡) during the pulse sequence blocks 2⃝ and 4⃝,

𝛽 2⃝(𝑡) = 𝜔nut(𝑡 − 𝑡2) (49)

4⃝(𝑡) = 𝜔nut(𝑡 − 𝑡4), (50)

where the following relation applies as the nutation frequency 𝜔nut is
he same during time blocks 2⃝ and 4⃝:

𝛽 4⃝(𝑡 +
𝜏𝑟
2
) = 𝛽 2⃝(𝑡) (51)

With the help of Eqs. (49) and (50) the expression in the propagator
an be simplified:

𝑈𝐴(𝑡, 𝑡1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 for 𝑡1 ≤ 𝑡 < 𝑡2
𝑅𝑥

(

𝛽 2⃝(𝑡)
)

for 𝑡2 ≤ 𝑡 < 𝑡3
𝑅𝑥(𝜋) for 𝑡3 ≤ 𝑡 < 𝑡4
𝑅𝑥(𝜋)𝑅𝑥

(

𝛽 4⃝(𝑡)
)

for 𝑡4 ≤ 𝑡 ≤ 𝑡5.

(52)

Finally, for the transformation into the interaction frame we also need
o calculate the adjoint of the rf propagator:

𝑈†
𝐴(𝑡, 𝑡1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 for 𝑡1 ≤ 𝑡 < 𝑡2
𝑅𝑥

(

−𝛽 2⃝(𝑡)
)

for 𝑡2 ≤ 𝑡 < 𝑡3
𝑅𝑥(−𝜋) for 𝑡3 ≤ 𝑡 < 𝑡4
𝑅𝑥

(

−𝛽 4⃝(𝑡)
)

𝑅𝑥(−𝜋) for 𝑡4 ≤ 𝑡 ≤ 𝑡5.

(53)

2.3.3. Interaction frame Hamiltonian
We can now employ the rf propagator 𝑈𝐴(𝑡, 𝑡1) calculated in the

revious section to transform the Hamiltonian into the interaction
frame of rf field Hamiltonian 𝐻𝐴(𝑡) according to Eq. (I-56):
𝐻̃𝐵(𝑡) = 𝑈𝐴(𝑡, 𝑡1)†𝐻𝐵(𝑡)𝑈𝐴(𝑡, 𝑡1)

= 𝜔DD
𝐼 𝑆 (𝑡) 2𝑆𝑧

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐼𝑧 for 𝑡1 ≤ 𝑡 < 𝑡2
𝑅𝑥

(

−𝛽 2⃝(𝑡)
)

𝐼𝑧𝑅𝑥
(

𝛽 2⃝(𝑡)
)

for 𝑡2 ≤ 𝑡 < 𝑡3
−𝐼𝑧 for 𝑡3 ≤ 𝑡 < 𝑡4
−𝑅𝑥

(

−𝛽 4⃝(𝑡)
)

𝐼𝑧𝑅𝑥
(

𝛽 4⃝(𝑡)
)

for 𝑡4 ≤ 𝑡 ≤ 𝑡5

= 𝜔DD
𝐼 𝑆 (𝑡) 2𝑆𝑧

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐼𝑧 for 𝑡1 ≤ 𝑡 < 𝑡2
𝐼𝑧 cos 𝛽 2⃝(𝑡) + 𝐼𝑦 sin 𝛽 2⃝(𝑡) for 𝑡2 ≤ 𝑡 < 𝑡3

−𝐼𝑧 for 𝑡3 ≤ 𝑡 < 𝑡4
−𝐼𝑧 cos 𝛽 4⃝(𝑡) − 𝐼𝑦 sin 𝛽 4⃝(𝑡) for 𝑡4 ≤ 𝑡 ≤ 𝑡5,

(54)

where we have used 𝑅𝑥(𝜋)𝐼𝑧𝑅𝑥(−𝜋) = −𝐼𝑧 and 𝑅𝑥(𝛽)𝐼𝑧𝑅𝑥(−𝛽) =
𝐼𝑧 cos 𝛽 − 𝐼𝑦 sin 𝛽.

2.3.4. First order average Hamiltonian and propagator
After we have determined the interaction frame Hamiltonian in

Eq. (54), it is now time to calculate the first order average Hamiltonian
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according to Eq. (I-30):

̄ (1)
𝐵 = 1

𝑇 ∫

𝑡5

𝑡1
d𝑡 𝐻̃(𝑡)

= 1
𝜏𝑟 ∫

𝑡2

𝑡1
d𝑡 𝐻̃𝐵(𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
∫ 1⃝

+ 1
𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡 𝐻̃𝐵(𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
∫ 2⃝

+ 1
𝜏𝑟 ∫

𝑡4

𝑡3
d𝑡 𝐻̃𝐵(𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
∫ 3⃝

+ 1
𝜏𝑟 ∫

𝑡5

𝑡4
d𝑡 𝐻̃𝐵(𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
∫ 4⃝

(55)

where the integral over the complete time interval [𝑡1, 𝑡5] was split
into 4 separate integrals ∫ 1⃝, ∫ 2⃝, ∫ 3⃝ and ∫ 4⃝. In a first step the sum
∫ 1⃝ + ∫ 3⃝ can straightforwardly be calculated:

∫ 1⃝
+∫ 3⃝

= 2𝐼𝑧𝑆𝑧 1
𝜏𝑟

{

∫

𝑡2

𝑡1
d𝑡 𝜔DD

𝐼 𝑆 (𝑡) − ∫

𝑡4

𝑡3
d𝑡 𝜔DD

𝐼 𝑆 (𝑡)
}

= 2𝐼𝑧𝑆𝑧 1
𝜏𝑟 ∫

𝑡2

𝑡1
d𝑡
{

𝜔DD
𝐼 𝑆 (𝑡) − 𝜔DD

𝐼 𝑆 (𝑡 +
𝜏𝑟
2
)
}

= 2𝐼𝑧𝑆𝑧 2𝛺(1)

𝜏𝑟 ∫

𝑡2

𝑡1
d𝑡 cos

(

𝜔𝑟𝑡 − 𝛾𝐼 𝑆𝑃 𝑅
)

= 2𝐼𝑧𝑆𝑧 2𝛺(1)

𝜔𝑟𝜏𝑟

{

sin
(

𝜔𝑟𝑡2 − 𝛾𝐼 𝑆𝑃 𝑅
)

− sin(𝜔𝑟𝑡1 − 𝛾𝐼 𝑆𝑃 𝑅
)}

, (56)

where we have used the rotational symmetries Eqs. (11) and (12) in
he same way as in Eq. (29). In addition to 𝜔𝑟𝜏𝑟 = 2𝜋, we can use the

following identities derived from Eqs. (41) and (42),

𝜔𝑟𝑡2 = 𝜔𝑟𝑡0 − 𝑓
𝜋
2
+ 𝜋 (57)

𝜔𝑟𝑡1 = 𝜔𝑟𝑡0 + 𝑓
𝜋
2
, (58)

in order to simplify Eq. (56), leading to the following result:

∫ 1⃝
+∫ 3⃝

= −2𝐼𝑧𝑆𝑧 𝛺
(1)

𝜋

{

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅 − 𝑓 𝜋
2

)

+ sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅 + 𝑓 𝜋
2

)}

= −2𝐼𝑧𝑆𝑧 2
𝜋
𝛺(1) cos

(

𝑓 𝜋
2
)

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

, (59)

where we have used the identity sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽) = 2 cos 𝛽 sin 𝛼.
n a second step the sum ∫ 2⃝ + ∫ 4⃝ needs to be calculated, employing
gain the rotational symmetries Eqs. (11) and (12) and the relation of
he time-dependent nutation angles Eq. (51):

∫ 2⃝
+∫ 4⃝

= 2𝐼𝑧𝑆𝑧 1
𝜏𝑟

{

∫

𝑡2

𝑡1
d𝑡 𝜔DD

𝐼 𝑆 (𝑡)
{

𝐼𝑧 cos 𝛽 2⃝(𝑡) + 𝐼𝑦 sin 𝛽 2⃝(𝑡)
}

− ∫

𝑡4

𝑡3
d𝑡 𝜔DD

𝐼 𝑆 (𝑡)
{

𝐼𝑧 cos 𝛽 4⃝(𝑡) + 𝐼𝑦 sin 𝛽 4⃝(𝑡)
}

}

= 2𝐼𝑧𝑆𝑧 1
𝜏𝑟 ∫

𝑡2

𝑡1
d𝑡

{

𝜔DD
𝐼 𝑆 (𝑡)

{

𝐼𝑧 cos 𝛽 2⃝(𝑡) + 𝐼𝑦 sin 𝛽 2⃝(𝑡)
}

𝜔DD
𝐼 𝑆 (𝑡 +

𝜏𝑟
2
)
{

𝐼𝑧 cos 𝛽 4⃝(𝑡 +
𝜏𝑟
2
)

+𝐼𝑦 sin 𝛽 4⃝(𝑡 +
𝜏𝑟
2
)
}

}

= 2𝑆𝑧 1
𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡
{

𝜔DD
𝐼 𝑆 (𝑡) − 𝜔DD

𝐼 𝑆 (𝑡 +
𝜏𝑟
2
)
}

×
{

𝐼𝑧 cos 𝛽 2⃝(𝑡) + 𝐼𝑦 sin 𝛽 2⃝(𝑡)
}

= 2𝑆𝑧 2
𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡 𝜔(1)(𝑡)

{

𝐼𝑧 cos 𝛽 2⃝(𝑡) + 𝐼𝑦 sin 𝛽 2⃝(𝑡)
}

. (60)

Calculation of the integral in the last row of Eq. (60) can be performed
separately for the terms proportional to 𝐼 and 𝐼 , respectively. The
𝑧 𝑦
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term proportional to 𝐼𝑧 can be transformed in the following way:
2
𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡 𝜔(1)(𝑡) cos 𝛽 2⃝(𝑡)

= 2𝛺(1)

𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡 cos

(

𝜔𝑟𝑡 − 𝛾𝐼 𝑆𝑃 𝑅
)

cos
(𝜔𝑟
𝑓

(𝑡 − 𝑡2)
)

= 2𝛺(1)

𝜏𝑟 ∫

𝜏𝑝

0
d𝑡′ cos

(

𝜔𝑟(𝑡′ + 𝑡2) − 𝛾𝐼 𝑆𝑃 𝑅
)

cos
(𝜔𝑟
𝑓
𝑡′
)

= −2𝛺(1)

𝜏𝑟 ∫

𝑓 𝜋∕𝜔𝑟
0

d𝑡′ cos
(

𝜔𝑟𝑡
′ + 𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅 − 𝑓 𝜋

2
)

cos
(𝜔𝑟
𝑓
𝑡′
)

= − 2
𝜋
𝛺(1) 𝑓

2 cos(𝑓 𝜋∕2)
1 − 𝑓 2

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

(61)

where we have used the relationship

𝜔𝑟𝑡2 = 𝜔𝑟𝑡0 + 𝜋 − 𝑓 𝜋
2
. (62)

The term proportional to 𝐼𝑦 may be simplified in a similar fashion:
2
𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡 𝜔(1)(𝑡) sin 𝛽 2⃝(𝑡)

= 2𝛺(1)

𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡 cos

(

𝜔𝑟𝑡 − 𝛾𝐼 𝑆𝑃 𝑅
)

sin
(𝜔𝑟
𝑓

(𝑡 − 𝑡2)
)

= −2𝛺(1)

𝜏𝑟 ∫

𝑓 𝜋∕𝜔𝑟
0

d𝑡′ cos
(

𝜔𝑟𝑡
′ + 𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅 − 𝑓 𝜋

2
)

sin
(𝜔𝑟
𝑓
𝑡′
)

= − 2
𝜋
𝛺(1) 𝑓 cos(𝑓 𝜋∕2)

1 − 𝑓 2
cos

(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

(63)

Collecting all results from Eqs. (59)–(63), the final first order average
Hamiltonian may be written as:

𝐻̄ (1)
𝐵 = 𝜔̄(𝑧)

𝐼 𝑆 (𝑓 ) 2𝐼𝑧𝑆𝑧 + 𝜔̄
(𝑦)
𝐼 𝑆 (𝑓 ) 2𝐼𝑦𝑆𝑧, (64)

where the time-independent amplitudes 𝜔̄(𝑧)
𝐼 𝑆 and 𝜔̄(𝑦)

𝐼 𝑆 are given by

𝜔̄(𝑧)
𝐼 𝑆 (𝑓 ) = − 2

𝜋
𝛺(1) cos(𝑓 𝜋∕2) sin

(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

− 2
𝜋
𝛺(1) 𝑓

2 cos(𝑓 𝜋∕2)
1 − 𝑓 2

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

= − 2
𝜋
𝛺(1) cos(𝑓 𝜋∕2)

1 − 𝑓 2
sin

(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

=

√

2
𝜋
𝑏𝐼 𝑆 𝜍(𝑧)(𝑓 ) sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

(65)

and

𝜔̄(𝑦)
𝐼 𝑆 (𝑓 ) =−

2
𝜋
𝛺(1) 𝑓 cos(𝑓 𝜋∕2)

1 − 𝑓 2
cos

(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

=

√

2
𝜋
𝑏𝐼 𝑆 𝜍(𝑦)(𝑓 ) sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

cos
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

, (66)

where we have defined the two scaling factors 𝜍(𝑧)(𝑓 ) and 𝜍(𝑦)(𝑓 ):

𝜍(𝑧)(𝑓 ) = cos(𝑓 𝜋∕2)
1 − 𝑓 2

(67)

𝜍(𝑦)(𝑓 ) = 𝑓 cos(𝑓 𝜋∕2)
1 − 𝑓 2

(68)

Fig. 9 depicts both scaling factors as a function of the fraction 𝑓 of the
uration of the rf pulses and the rotational period.

With the help of the time-independent amplitudes 𝜔̄(𝑧)
𝐼 𝑆 (𝑓 ) and

𝜔̄(𝑦)
𝐼 𝑆 (𝑓 ) in Eqs. (65) and (66) the general complete first order average

Hamiltonian Eq. (64) can be written as:

𝐻̄ (1)
𝐵 =

√

2
𝜋
𝑏𝐼 𝑆 sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

{

𝜍(𝑧)(𝑓 ) sin(𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

2𝐼𝑧𝑆𝑧

+ 𝜍(𝑦)(𝑓 ) cos(𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

2𝐼𝑦𝑆𝑧

}

(69)

In a first step to discuss the implications of Eq. (69), it is insightful to
examine the two extreme cases of (i) ideal pulses that are infinitesimal
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Fig. 9. Scaling factors 𝜍(𝑧)(𝑓 ) and 𝜍(𝑦)(𝑓 ) defined in Eqs. (67) and (68), respectively,
as a function of the pulse fraction 𝑓 defined in Eq. (39).

short (𝑓 = 0) and (ii) a sequence that employs a constant, windowless
rf field (𝑓 = 1).

In the first case (i), 𝑓 = 0, we obtain the following expressions
for the factors containing the fraction 𝑓 and the time-independent
amplitudes 𝜔̄(𝑧)

𝐼 𝑆 and 𝜔̄(𝑦)
𝐼 𝑆 :

𝜍(𝑧)(0) = 1 ⇒ 𝜔̄(𝑧)
𝐼 𝑆 (0) =

√

2
𝜋
𝑏𝐼 𝑆 sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

(70)

𝜍(𝑦)(0) = 0 ⇒ 𝜔̄(𝑦)
𝐼 𝑆 (0) = 0. (71)

As expected in the case of 𝑓 = 0 we obtain in Eqs. (70) and (71)
he same result as previously in Eq. (30) with the resulting first order

average Hamiltonian

̄ (1)
𝐵 (𝑓 = 0) =

√

2
𝜋
𝑏𝐼 𝑆 sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

2𝐼𝑧𝑆𝑧 (72)

being identical to Eq. (31).
The second case (ii), 𝑓 = 1, corresponds to applying a constant

indowless rf field with the nutation frequency equal to the spinning
requency, 𝜔nut = 𝜔𝑟, see Eq. (40). This exactly resembles rotary
esonance recoupling (R3) at the 𝑛 = 1 resonance condition [40,41].

For 𝑓 = 1 we obtain:

𝜍(𝑧)(1) = 𝜋
4

⇒ 𝜔̄(𝑧)
𝐼 𝑆 (1) =

𝑏𝐼 𝑆
2
√

2
sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

(73)

𝜍(𝑦)(1) = 𝜋
4

⇒ 𝜔̄(𝑦)
𝐼 𝑆 (1) =

𝑏𝐼 𝑆
2
√

2
sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

cos
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

(74)

and the resulting first order average Hamiltonian
̄ (1)
𝐵 (𝑓 = 1)

=
𝑏𝐼 𝑆
2
√

2
sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

{

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

2𝐼𝑧𝑆𝑧 + cos(𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

2𝐼𝑦𝑆𝑧

}

.

(75)

We have seen that in the case that all rf pulses have the same phase
, REDOR with infinitesimal short pulses, REDOR with finite pulses
nd rotary resonance recoupling at the 𝑛 = 1 resonance condition are
ust specific manifestations of the same general recoupling mechanism.
nterestingly, Levitt et al. had suggested that the unmodulated rf field
uring R3 could be replaced by discrete 180◦ pulses every half rotor
eriod [41], which is identical to the original REDOR sequence [2,3].

In the case of a general value for the fraction 𝑓 the propagator under
the REDOR sequence with finite rf pulses is given by
𝑈 (𝑡1 + 𝜏 , 𝑡1) = exp{−i𝐻̄ (1)

𝐵 𝜏}

= exp
{

−i 𝜏
{

𝜔̄(𝑧)
𝐼 𝑆 (𝑓 ) 2𝐼𝑧𝑆𝑧 + 𝜔̄

(𝑦)
𝐼 𝑆 (𝑓 ) 2𝐼𝑦𝑆𝑧

}

}

, (76)

where the propagator in the second row corresponds to a rotation in
he spin-1∕2 (𝐼 , 2𝐼 𝑆 , 2𝐼 𝑆 ) operator subspace around an axis in the
𝑥 𝑦 𝑧 𝑧 𝑧 b
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(2𝐼𝑦𝑆𝑧, 2𝐼𝑧𝑆𝑧)-plane enclosing an angle of 𝜓(𝑓 ) with the 2𝐼𝑧𝑆𝑧-axis and
a rotation angle of 𝜔̄eff

𝐼 𝑆 (𝑓 ) 𝜏, where the angle 𝜓(𝑓 ) and the effective
amplitude 𝜔̄eff

𝐼 𝑆 (𝑓 ) are given by:

𝜓(𝑓 ) = ar ct an
(

𝜔̄(𝑦)
𝐼 𝑆 (𝑓 )

𝜔̄(𝑧)
𝐼 𝑆 (𝑓 )

)

(77)

𝜔̄eff
𝐼 𝑆 (𝑓 ) =

√

𝜔̄(𝑦)
𝐼 𝑆 (𝑓 )2 + 𝜔̄

(𝑧)
𝐼 𝑆 (𝑓 )2. (78)

The effective amplitudes 𝜔̄eff
𝐼 𝑆 (𝑓 ) for the two cases (i) 𝑓 = 0, ideal pulses

nd 𝑓 = 1, windowless rf field (R3, 𝑛 = 1 condition) are given by:

𝜔̄eff
𝐼 𝑆 (0) =

|

|

|

𝜔̄(𝑧)
𝐼 𝑆 (0)

|

|

|

=

√

2
𝜋

|

|

|

𝑏𝐼 𝑆 sin
(

2𝛽𝐼 𝑆𝑃 𝑅
)

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

|

|

|

(79)

𝜔̄eff
𝐼 𝑆 (1) =

√

𝜔̄(𝑦)
𝐼 𝑆 (1)2 + 𝜔̄

(𝑧)
𝐼 𝑆 (1)2 =

1

2
√

2
|

|

|

𝑏𝐼 𝑆 sin
(

2𝛽𝐼 𝑆𝑃 𝑅
)

|

|

|

(80)

We note that 𝜔̄eff
𝐼 𝑆 (1) for a constant, windowless rf field, which is

equivalent to the R3 𝑛 = 1 resonance condition, does neither depend
on the powder angle 𝛾𝐼 𝑆𝑃 𝑅 nor on the starting time point 𝑡0 of the pulse
sequence. In this case a pulse sequence is referred to as being 𝛾-encoded
[14,56–58]. This property leads to more pronounced oscillations in the
dephasing curves as will be discussed below.

With the help of the definitions Eqs. (77) and (78) the propagator
in Eq. (76) can be written as:

𝑈 (𝑡1 + 𝜏 , 𝑡1) = 𝑅𝑥 (−𝜓(𝑓 )) exp{−i 𝜔̄eff
𝐼 𝑆 (𝑓 )𝜏 2𝐼𝑧𝑆𝑧} 𝑅𝑥 (𝜓(𝑓 )) . (81)

The 𝑆-spin-echo intensity under a REDOR sequence of duration 𝜏 for
a single crystallite orientation can be calculated according to Eq. (34),

here the 𝐼-spin rotation operator 𝑅𝑥 (𝜓(𝑓 )) commutes with the 𝐼𝑥 spin
perator:

𝑆(𝜏; 𝑓 ;𝛺𝐼 𝑆
𝑃 𝑅) =

Tr
{

𝐼𝑥 𝑈 (𝑡1 + 𝜏 , 𝑡1) 𝐼𝑥 𝑈†(𝑡1 + 𝜏 , 𝑡1)
}

Tr
{

𝐼2𝑥
}

= cos (𝜔̄eff
𝐼 𝑆 (𝑓 ) 𝜏

)

(82)

Analogous to Eq. (35) the final 𝑆-spin signal intensity in a powdered
sample as a function of the duration 𝜏 of the REDOR sequence is
obtained by averaging over all possible orientations 𝛺𝐼 𝑆

𝑃 𝑅:

𝑆(𝜏 , 𝑓 ) = ⟨

cos
(

𝜔̄eff
𝐼 𝑆 (𝑓 ) 𝜏

)⟩

𝛺𝐼 𝑆𝑃 𝑅 (83)

Naturally, in the case of 𝑓 = 0 the signal intensity is identical to
Eq. (37):

𝑆(𝜏 , 0) = 𝜋

2
√

2
𝐽−1∕4

(
√

2
2𝜋

𝑏𝐼 𝑆 𝜏
)

𝐽1∕4

(
√

2
2𝜋

𝑏𝐼 𝑆 𝜏
)

(84)

More interestingly, in the case of a constant windowless rf field (𝑓 = 1),
i. e. R3 at the 𝑛 = 1 resonance condition, the integral in Eq. (83) together
with Eqs. (80) and (36) can be analytically expressed compactly with
he help of the Lommel function [51] as shown in Appendix A:

𝑆(𝜏 , 1) = −1
4
𝑠−1,1∕2

(

1

2
√

2
𝑏𝐼 𝑆 𝜏

)

, (85)

where 𝑠𝜈 ,𝜇(𝑧) denotes the Lommel function with in general integer
r fractional parameters 𝜈 and 𝜇 and in general complex argument
[51]. Although the use of the Lommel function in Eq. (85) leads to

the most appealing and neat expression, we show in Appendix A that
lternatively, the Lommel function may be expressed with the help
f the hypergeometric, Anger or Weber functions [51]. Furthermore,

as shown, the Lommel function can also be expressed with the help
of the Fresnel cosine and sine integrals [50]. Previously, Pileio et al.
have shown that the double-quantum filtered efficiency as a function
of the duration of the application of a 𝛾-encoded homonuclear dipolar
recoupling sequence can be expressed employing Fresnel cosine and
sine integrals [59]. We expect that the use of the Lommel function will
e significantly more elegant for this purpose as well.
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Fig. 10. Calculated 𝑆-spin-echo amplitudes 𝑆(𝜏) for different values of the pulse
fraction 𝑓 as a function of the duration 𝜏 during which the REDOR sequence with
ideal pulses is applied. (A) Employing finite 180𝑥 pulses, 𝑆(𝜏) according to Eq. (83).
B) Employing finite 180◦ pulses with a sequence of phases such that the resulting

average Hamiltonian is solely proportional to 2𝐼𝑧𝑆𝑧, resulting in 𝑆(𝜏) according to
Eq. (152).

Fig. 10(A) shows the result of calculating 𝑆(𝜏 , 𝑓 ) for a dipolar
coupling constant 𝑏𝐼 𝑆∕2𝜋 = 950 Hz and three different values 𝑓 = 0.0,
0.7 and 1.0. Clearly visible are the more pronounced oscillations in the
case of 𝑓 = 1.0 stemming from the fact that pulse sequence becomes
𝛾-encoded as it resembles rotary resonance recoupling at the 𝑛 = 1
resonance condition. For decreasing values of 𝑓 the oscillations become
less pronounced until at 𝑓 = 0 they are least clearly visible. Fig. 10(A)
illustrates why in general 𝛾-encoded dipolar recoupling sequences are
desirable: the stronger oscillations allow for a more exact determination
f internuclear distances.

2.4. REDOR with finite pulses employing a sequence of rf phases

In the previous section we have extended the discussion of the
REDOR heteronuclear dipolar recoupling sequence to the use of finite
rf pulses that all employ the same zero rf phase. The resulting first
order average Hamiltonian Eq. (69) contains terms proportional to
he spin operators 2𝐼𝑧𝑆𝑧 and 2𝐼𝑦𝑆𝑧, where their individual amplitude

depends on the fraction 𝑓 of the rotational period that is occupied by
he rf pulses. The reader will know that in practise the 180◦ pulses

during the REDOR sequence employ a sequence of rf phases such as
the XY-4 sequence, 0◦, 90◦, 0◦, 90◦, to improve the stability of the
sequence with respect to rf offset and rf amplitude errors [60–63].
However, in addition such a sequence of phases leads to a simplified
first order average Hamiltonian solely proportional to the heteronuclear
longitudinal two-spin-order operator 2𝐼𝑧𝑆𝑧 [43].

In this section, rather than analysing a given, existing sequence
f rf phases for the REDOR rf pulses, the goal is to start with the rf

phases as variables and to use first order average Hamiltonian theory
to find solutions for the sequence of phases that result in the desired
form of the first order average Hamiltonian solely proportional to the
10 
2𝐼𝑧𝑆𝑧 heteronuclear longitudinal two-spin order operator. This problem
s closely related to compensating a train of 180◦ pulses in proton

decoupling or the Carr-Purcell Meiboom-Gill (CPMG) sequence [64,65]
with respect to rf offset and amplitude errors [60–63,66–70].

As shown in Fig. 7(C) we consider two basic building blocks of the
EDOR sequence employing a total of 4 180◦ pulses with arbitrary

rf phases 𝜙1–𝜙4. The use of two basic building blocks rather than
ust a single one proves necessary to achieve the first order average
amiltonian solely being proportional to 2𝐼𝑧𝑆𝑧. Fig. 7(C) shows the
efinitions of time points 𝑡0 to 𝑡9 and sequence segments 1⃝– 8⃝ during
he two basic building blocks of the REDOR sequence. The definitions
f time points 𝑡1 to 𝑡5 with respect to 𝑡0 is identical to Eqs. (41)–(45). In

addition, we can express the time points 𝑡6 to 𝑡9 in the following way:

𝑡6 = 𝑡0 +
3𝜏𝑟
2

− 𝑓
𝜏𝑟
4

(86)

𝑡7 = 𝑡0 +
3𝜏𝑟
2

+ 𝑓
𝜏𝑟
4

(87)

𝑡8 = 𝑡0 + 2𝜏𝑟 − 𝑓
𝜏𝑟
4

(88)

𝑡9 = 𝑡0 + 2𝜏𝑟 + 𝑓
𝜏𝑟
4

(89)

To enhance the accessibility of the following calculations, readers are
encouraged to first review the results presented in Eq. (125), which
is the outcome of applying first-order average Hamiltonian theory to
the REDOR sequence employing finite pulses with arbitrary rf phases.
Afterwards, they can return to this section for a deeper understanding.

2.4.1. Hamiltonian
The Hamiltonian Eq. (21) during REDOR pulse sequence assuming

n rf phase of 𝜙 = 0 for all rf pulses can be modified to accommodate
general rf pulse phases with the help of Eq. (I-16):
𝐻(𝑡) = 𝐻rf(𝑡) +𝐻int(𝑡)

= 𝜔nut(𝑡) 𝑅𝑧
(

𝜙(𝑡)
)

𝐼𝑥 𝑅𝑧
(

−𝜙(𝑡)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻𝐴(𝑡)

+𝜔DD
𝐼 𝑆 (𝑡) 2𝐼𝑧𝑆𝑧

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝐻𝐵(𝑡)

, (90)

where 𝜙(𝑡) denotes the time-dependent rf phase during the basic RE-
DOR sequence block in Fig. 7(C), which spans a total of two rotational
periods, 𝑇 = 2𝜏𝑟. As a result 𝐻𝐴(𝑡) and 𝐻𝐵(𝑡) are periodic in time with
eriods 2𝜏𝑟 and 𝜏𝑟, respectively. However that implies that both are
eriodic in time with 2𝜏𝑟:

𝐻𝐴(𝑡 + 2𝜏𝑟) = 𝐻𝐴(𝑡) 𝐻𝐵(𝑡 + 2𝜏𝑟) = 𝐻𝐵(𝑡). (91)

The piecewise time-independent Hamiltonian 𝐻𝐴(𝑡) of the interaction
with the rf field is given by:

𝐻𝐴(𝑡) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 for
𝑡1 ≤ 𝑡 < 𝑡2 or 𝑡3 ≤ 𝑡 < 𝑡4 or
𝑡5 ≤ 𝑡 < 𝑡6 or 𝑡7 ≤ 𝑡 < 𝑡8

𝜔nut 𝑅𝑧(𝜙1) 𝐼𝑥 𝑅𝑧(−𝜙1) for 𝑡2 ≤ 𝑡 < 𝑡3
𝜔nut 𝑅𝑧(𝜙2) 𝐼𝑥 𝑅𝑧(−𝜙2) for 𝑡4 ≤ 𝑡 < 𝑡5
𝜔nut 𝑅𝑧(𝜙3) 𝐼𝑥 𝑅𝑧(−𝜙3) for 𝑡6 ≤ 𝑡 < 𝑡7
𝜔nut 𝑅𝑧(𝜙4) 𝐼𝑥 𝑅𝑧(−𝜙4) for 𝑡8 ≤ 𝑡 ≤ 𝑡9, (92)

and the time-dependent Hamilton of the heteronuclear dipolar interac-
ion is given by:

𝐻𝐵(𝑡) = 𝜔DD
𝐼 𝑆 (𝑡) 2𝐼𝑧𝑆𝑧. (93)

2.4.2. Rf propagator
With the help of the rf Hamiltonian 𝐻𝐴(𝑡) in Eq. (92) we can

alculate the propagator 𝑈𝐴(𝑡, 𝑡1) that will be used to transform the
amiltonian Eq. (90) into the interaction frame of the rf field. However

as shown in Fig. 7(C) we have to consider the 8 different blocks 1⃝– 8⃝
in the sequence when setting up 𝑈𝐴(𝑡, 𝑡1). To improve the readability of
the equations from this point forward, we introduce two new symbols
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𝑈 1⃝ 4⃝
𝐴 (𝑡, 𝑡1) and 𝑈 5⃝ 8⃝

𝐴 (𝑡, 𝑡1) that denote the total accumulated propaga-
tors of the rf field from time point 𝑡1 up to a time point 𝑡 in the time
intervals [𝑡1, 𝑡5[ and [𝑡5, 𝑡9], respectively:

𝑈𝐴(𝑡, 𝑡1) =
⎧

⎪

⎨

⎪

⎩

𝑈 1⃝ 4⃝
𝐴 (𝑡, 𝑡1) for 𝑡1 ≤ 𝑡 < 𝑡5

𝑈 5⃝ 8⃝
𝐴 (𝑡, 𝑡1) for 𝑡5 ≤ 𝑡 ≤ 𝑡9

(94)

The propagator 𝑈 1⃝ 4⃝
𝐴 (𝑡, 𝑡1) is given by

𝑈 1⃝ 4⃝
𝐴 (𝑡, 𝑡1) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 for 𝑡1 ≤ 𝑡 < 𝑡2
𝑅𝑧(𝜙1)𝑅𝑥

(

𝛽 2⃝(𝑡)
)

𝑅𝑧(−𝜙1) for 𝑡2 ≤ 𝑡 < 𝑡3
𝑅𝑧(𝜙1)𝑅𝑥(𝜋)𝑅𝑧(−𝜙1) for 𝑡3 ≤ 𝑡 < 𝑡4
𝑅𝑧(𝜙2)𝑅𝑥

(

𝛽 4⃝(𝑡)
)

𝑅𝑧(−𝜙2)
×𝑅𝑧(𝜙1)𝑅𝑥(𝜋)𝑅𝑧(−𝜙1) for 𝑡4 ≤ 𝑡 < 𝑡5.

(95)

and can be simplified to

𝑈 1⃝ 4⃝
𝐴 (𝑡, 𝑡1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 for 𝑡1 ≤ 𝑡 < 𝑡2
𝑅𝑧(𝜙1)𝑅𝑥

(

𝛽 2⃝(𝑡)
)

𝑅𝑧(−𝜙1) for 𝑡2 ≤ 𝑡 < 𝑡3
𝑅𝑥(𝜋)𝑅𝑧(−2𝜙1) for 𝑡3 ≤ 𝑡 < 𝑡4
𝑅𝑥(𝜋)𝑅𝑧(−𝜙2)𝑅𝑥

(

𝛽 4⃝(𝑡)
)

𝑅𝑧(−2𝜙1 + 𝜙2) for 𝑡4 ≤ 𝑡 < 𝑡5,
(96)

where in the third and fourth row the rotation operator 𝑅𝑥(𝜋) was
oved to the front, which allowed to collect the 𝑧-rotations at the end.
e have used the time-dependent nutation angles 𝛽 2⃝(𝑡) and 𝛽 4⃝(𝑡) that

ave been introduced in Eqs. (49) and (50), respectively. For the pulse
sequence blocks 6⃝ and 8⃝, the corresponding time-dependent nutation
angles 𝛽 6⃝(𝑡) and 𝛽 8⃝(𝑡) may be defined:

𝛽 6⃝(𝑡) = 𝜔nut(𝑡 − 𝑡6) (97)

𝛽 8⃝(𝑡) = 𝜔nut(𝑡 − 𝑡8), (98)

where analogous to Eq. (51), they may be expressed as a function of
𝛽 2⃝(𝑡):

𝛽 6⃝(𝑡 + 𝜏𝑟) = 𝛽 2⃝(𝑡) (99)

𝛽 8⃝(𝑡 +
3𝜏𝑟
2

) = 𝛽 2⃝(𝑡) (100)

For the propagator 𝑈 5⃝ 8⃝
𝐴 (𝑡, 𝑡1) we obtain:

𝑈 5⃝ 8⃝
𝐴 (𝑡, 𝑡1) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑅𝑧(−2𝜙1 + 2𝜙2) for 𝑡5 ≤ 𝑡 < 𝑡6
𝑅𝑧(𝜙3)𝑅𝑥

(

𝛽 6⃝(𝑡)
)

×𝑅𝑧(−2𝜙1 + 2𝜙2 − 𝜙3) for 𝑡6 ≤ 𝑡 < 𝑡7
𝑅𝑥(𝜋)𝑅𝑧(−2𝜙1 + 2𝜙2 − 2𝜙3) for 𝑡7 ≤ 𝑡 < 𝑡8
𝑅𝑥(𝜋)𝑅𝑧(−𝜙4)𝑅𝑥

(

𝛽 8⃝(𝑡)
)

×𝑅𝑧(−2𝜙1 + 2𝜙2 − 2𝜙3 + 𝜙4) for 𝑡8 ≤ 𝑡 ≤ 𝑡9.

(101)

It will prove useful in the next section to introduce abbreviations for
the accumulated phases in rows 2 and 4 in both Eqs. (96) and (101):

𝜒 2⃝ = 𝜙1 (102)

4⃝ = 2𝜙1 − 𝜙2 (103)

6⃝ = 2𝜙1 − 2𝜙2 + 𝜙3 (104)

8⃝ = 2𝜙1 − 2𝜙2 + 2𝜙3 − 𝜙4 (105)

where the first line has solely been added for completeness. In addition
o providing more clarity in writing the equations it shows how the

case of four 180◦ rf pulses with arbitrary phases can be extended to
dding further pulses. Here, we will not repeat Eqs. (96) and (101)
sing these abbreviations, however, for the transformation into the

interaction frame we need the adjoint of both propagators, 𝑈 1⃝ 4⃝(𝑡, 𝑡 )
𝐴 1

11 
and 𝑈 5⃝ 8⃝
𝐴 (𝑡, 𝑡1):

𝑈† 1⃝ 4⃝
𝐴 (𝑡, 𝑡1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 for 𝑡1 ≤ 𝑡 < 𝑡2
𝑅𝑧(𝜒 2⃝)𝑅𝑥

(

−𝛽 2⃝(𝑡)
)

𝑅𝑧(−𝜙1) for 𝑡2 ≤ 𝑡 < 𝑡3
𝑅𝑧(𝜒 2⃝ + 𝜙1)𝑅𝑥(−𝜋) for 𝑡3 ≤ 𝑡 < 𝑡4
𝑅𝑧(𝜒 4⃝)𝑅𝑥

(

−𝛽 4⃝(𝑡)
)

𝑅𝑧(𝜙2)𝑅𝑥(−𝜋) for 𝑡4 ≤ 𝑡 < 𝑡5.
(106)

and

𝑈† 5⃝ 8⃝
𝐴 (𝑡, 𝑡1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅𝑧(𝜒 4⃝ − 𝜙2) for 𝑡5 ≤ 𝑡 < 𝑡6
𝑅𝑧(𝜒 6⃝)𝑅𝑥

(

−𝛽 6⃝(𝑡)
)

𝑅𝑧(−𝜙3) for 𝑡6 ≤ 𝑡 < 𝑡7
𝑅𝑧(𝜒 6⃝ + 𝜙3)𝑅𝑥(−𝜋) for 𝑡7 ≤ 𝑡 < 𝑡8
𝑅𝑧(𝜒 8⃝)𝑅𝑥

(

−𝛽 8⃝(𝑡)
)

𝑅𝑧(𝜙4)𝑅𝑥(−𝜋) for 𝑡8 ≤ 𝑡 ≤ 𝑡9.

(107)

We note that with using the abbreviations 𝜒1–𝜒4 rows 2 and 4 in
both Eqs. (106) and (107) have a similar form. Furthermore, as the

amiltonian 𝐻𝐵(𝑡) of the heteronuclear dipolar interaction Eq. (93) is
proportional to 𝐼𝑧, row 1 in both (106) and (107) does not change 𝐼𝑧
nd row 3 in both (106) and (107) simply inverts 𝐼𝑧.

2.4.3. Interaction frame Hamiltonian
The propagators 𝑈† 1⃝ 4⃝

𝐴 (𝑡, 𝑡1) and 𝑈† 5⃝ 8⃝
𝐴 (𝑡, 𝑡1) calculated in the pre-

vious section can now be used to transform the Hamiltonian into the
nteraction frame of the rf field. The transformation into the interaction
rame is performed according to Eq. (I-56). For clarity the interaction

frame Hamiltonian 𝐻̃𝐵(𝑡) will also be separated into two parts:

𝐻̃𝐵(𝑡) = 𝑈𝐴(𝑡, 𝑡1)†𝐻𝐵(𝑡)𝑈𝐴(𝑡, 𝑡1)

=

⎧

⎪

⎨

⎪

⎩

𝑈† 1⃝ 4⃝
𝐴 (𝑡, 𝑡1) 𝐻𝐵(𝑡) 𝑈

1⃝ 4⃝
𝐴 (𝑡, 𝑡1) for 𝑡0 ≤ 𝑡 < 𝑡5

𝑈† 5⃝ 8⃝
𝐴 (𝑡, 𝑡1) 𝐻𝐵(𝑡) 𝑈

5⃝ 8⃝
𝐴 (𝑡, 𝑡1) for 𝑡5 ≤ 𝑡 ≤ 𝑡9

(108)

=

⎧

⎪

⎨

⎪

⎩

𝐻̃ 1⃝ 4⃝
𝐵 (𝑡) for 𝑡0 ≤ 𝑡 < 𝑡5

𝐻̃ 5⃝ 8⃝
𝐵 (𝑡) for 𝑡5 ≤ 𝑡 ≤ 𝑡9.

(109)

Here we will as an example show the transformation for a time point 𝑡
n the interval [𝑡4, 𝑡5[, which corresponds to the last lines in 𝑈 1⃝ 4⃝

𝐴 (𝑡, 𝑡1)
and 𝑈† 1⃝ 4⃝

𝐴 (𝑡, 𝑡1) in Eqs. (96) and (106), respectively. For 𝑡4 ≤ 𝑡 < 𝑡5:
𝐻̃ 1⃝ 4⃝
𝐵 (𝑡)

= 𝜔DD
𝐼 𝑆 (𝑡) 2𝑆𝑧 𝑅𝑧(𝜒 4⃝)𝑅𝑥

(

−𝛽 4⃝(𝑡)
)

×𝑅𝑧(𝜙2)𝑅𝑥(−𝜋) 𝐼𝑧 𝑅𝑥(𝜋)𝑅𝑧(−𝜙2)𝑅𝑥
(

𝛽 4⃝(𝑡)
)

𝑅𝑧(−𝜒 4⃝)

= −𝜔DD
𝐼 𝑆 (𝑡) 2𝑆𝑧 𝑅𝑧(𝜒 4⃝)𝑅𝑥

(

−𝛽 4⃝(𝑡)
)

𝐼𝑧 𝑅𝑥
(

𝛽 4⃝(𝑡)
)

𝑅𝑧(−𝜒 4⃝)

= −𝜔DD
𝐼 𝑆 (𝑡) 2𝑆𝑧 𝑅𝑧(𝜒 4⃝)

{

𝐼𝑧 cos 𝛽 4⃝(𝑡) + 𝐼𝑦 sin 𝛽 4⃝(𝑡)
}

𝑅𝑧(−𝜒 4⃝)

= −𝜔DD
𝐼 𝑆 (𝑡) 2𝑆𝑧

{

𝐼𝑧 cos 𝛽 4⃝(𝑡) + {

𝐼𝑦 cos𝜒 4⃝ − 𝐼𝑥 sin𝜒 4⃝
}

sin 𝛽 4⃝(𝑡)
}

,

(110)

In a similar way as in the Eq. (110) the other rows in the interaction
frame Hamiltonians 𝐻̃ 1⃝ 4⃝

𝐵 (𝑡) and 𝐻̃ 5⃝ 8⃝
𝐵 (𝑡) can be calculated, resulting

in

𝐻̃ 1⃝ 4⃝
𝐵 (𝑡) = 𝜔DD

𝐼 𝑆 (𝑡) 2𝑆𝑧

×

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝐼𝑧 for 𝑡1 ≤ 𝑡 < 𝑡2
𝐼𝑧 cos 𝛽 2⃝(𝑡)

+
{

𝐼𝑦 cos𝜒 2⃝ − 𝐼𝑥 sin𝜒 2⃝
}

sin 𝛽 2⃝(𝑡) for 𝑡2 ≤ 𝑡 < 𝑡3
−𝐼𝑧 for 𝑡3 ≤ 𝑡 < 𝑡4
−𝐼𝑧 cos 𝛽 4⃝(𝑡)

−
{

𝐼 cos𝜒 − 𝐼 sin𝜒
}

sin 𝛽 (𝑡) for 𝑡 ≤ 𝑡 < 𝑡

(111)
⎩

𝑦 4⃝ 𝑥 4⃝ 4⃝ 4 5
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and

̃ 5⃝ 8⃝
𝐵 (𝑡) = 𝜔DD

𝐼 𝑆 (𝑡) 2𝑆𝑧

×

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐼𝑧 for 𝑡5 ≤ 𝑡 < 𝑡6
𝐼𝑧 cos 𝛽 6⃝(𝑡)

+
{

𝐼𝑦 cos𝜒 6⃝ − 𝐼𝑥 sin𝜒 6⃝
}

sin 𝛽 6⃝(𝑡) for 𝑡6 ≤ 𝑡 < 𝑡7
−𝐼𝑧 for 𝑡7 ≤ 𝑡 < 𝑡8
−𝐼𝑧 cos 𝛽 8⃝(𝑡)

−
{

𝐼𝑦 cos𝜒 8⃝ − 𝐼𝑥 sin𝜒 8⃝
}

sin 𝛽 8⃝(𝑡) for 𝑡8 ≤ 𝑡 ≤ 𝑡9.

(112)

2.4.4. First order average Hamiltonian and propagator
After the interaction frame Hamiltonians 𝐻̃ 1⃝ 4⃝

𝐵 (𝑡) and 𝐻̃ 5⃝ 8⃝
𝐵 (𝑡)

ave been determined in the previous section, the first order average
amiltonian over the complete interval [𝑡1, 𝑡9] with duration 𝑇 = 2𝜏𝑟
an be calculated according to
̄ (1)
𝐵 = 1

𝑇 ∫

𝑡5

𝑡1
d𝑡 𝐻̃(𝑡)

=
8
∑

𝑘=1

1
2𝜏𝑟 ∫

𝑡𝑘+1

𝑡𝑘
d𝑡 𝐻̃𝐵(𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∫ k⃝

, (113)

where the integral over [𝑡1, 𝑡9] was split into 8 separate intergrals
enoted ∫ k⃝ with 𝑘 = 1...8. In a first step the sum of the odd numbered
ntegrals ∫ 1⃝, ∫ 3⃝, ∫ 5⃝ and ∫ 7⃝ is calculated analogous to Eqs. (56)–(59)
n Section 2.3.4, where the final result is identical to Eq. (59) and given

by

∫ 1⃝
+∫ 3⃝

+∫ 5⃝
+∫ 7⃝

= −2𝐼𝑧𝑆𝑧 2
𝜋
𝛺(1) cos(𝑓 𝜋∕2) sin(𝜔𝑟𝑡0−𝛾𝐼 𝑆𝑃 𝑅

)

. (114)

The even numbered integrals ∫ 2⃝, ∫ 4⃝, ∫ 6⃝ and ∫ 8⃝ are more elaborate
to calculate compared to Section 2.3.4, as the rf pulses have the general
phases 𝜙1–𝜙4. However, the introduction of 𝜒 2⃝–𝜒 8⃝ in Eqs. (111) and
(112) allows to write the sum in the following way:

∫ 2⃝
+∫ 4⃝

+∫ 6⃝
+∫ 8⃝

= 2𝑆𝑧
∑

𝑘=2,4,6,8

(−1)1+
𝑘
2

2𝜏𝑟 ∫

𝑡𝑘+1

𝑡𝑘
d𝑡 𝜔DD

𝐼 𝑆 (𝑡)
{

𝐼𝑧 cos 𝛽 k⃝(𝑡)

+
{

𝐼𝑦 cos𝜒 k⃝ − 𝐼𝑥 sin𝜒 k⃝
}

sin 𝛽 k⃝(𝑡)
}

, (115)

where we note that the term proportional to cos 𝛽 k⃝(𝑡) does not depend
n the rf phases and therefore its integral can be calculated in a similar
ay as in Eqs. (60) and (61). The term proportional to sin 𝛽 k⃝(𝑡) depends
n the different rf phases, hence, in order to calculate its integral the
erms have to be collected in the following way:

∫ 2⃝
+∫ 4⃝

+∫ 6⃝
+∫ 8⃝

= 2𝑆𝑧𝐼𝑧 𝛺(1) 2
𝜋
𝑓 2 cos(𝑓 𝜋∕2)

𝑓 2 − 1 sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

+ 2𝑆𝑧 1
2𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡 sin 𝛽 2⃝(𝑡)

{

𝜔DD
𝐼 𝑆 (𝑡)

[

𝐼𝑦 𝑐1 − 𝐼𝑥 𝑠1
]

− 𝜔DD
𝐼 𝑆 (𝑡 +

𝜏𝑟
2
)
[

𝐼𝑦 𝑐2 − 𝐼𝑥 𝑠2
]

}

,
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∫ S⃝

(116)

where we have introduced another shorthand notation:

𝑐1 = cos𝜒 2⃝ + cos𝜒 6⃝ (117)

1 = sin𝜒 2⃝ + sin𝜒 6⃝ (118)

𝑐2 = cos𝜒 4⃝ + cos𝜒 8⃝ (119)
2 = sin𝜒 4⃝ + sin𝜒 8⃝. (120)

12 
The integral ∫ S⃝ can be simplified using the time symmetry relations
qs. (11) and (12):

∫ S⃝
= 2𝑆𝑧

1
4
[

𝐼𝑦 (𝑐1 + 𝑐2) − 𝐼𝑥 (𝑠1 + 𝑠2)
] 2
𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡 𝜔(1)(𝑡) sin 𝛽 2⃝(𝑡)

+ 2𝑆𝑧 1
4
[

𝐼𝑦 (𝑐1 − 𝑐2) − 𝐼𝑥 (𝑠1 − 𝑠2)
] 2
𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡 𝜔(2)(𝑡) sin 𝛽 2⃝(𝑡) (121)

The integral over time of 𝜔(1)(𝑡) sin 𝛽 2⃝(𝑡) in the first row was already
etermined earlier in Eq. (63). The time integral over 𝜔(2)(𝑡) sin 𝛽 2⃝(𝑡)

in the second row can be solved in the following way:

2
𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡 𝜔(2)(𝑡) sin 𝛽 2⃝(𝑡)

= 2𝛺(2)

𝜏𝑟 ∫

𝑡3

𝑡2
d𝑡 cos

(

2(𝜔𝑟𝑡 − 𝛾𝐼 𝑆𝑃 𝑅)
)

sin
(𝜔𝑟
𝑓

(𝑡 − 𝑡2)
)

= 2𝛺(2)

𝜏𝑟 ∫

𝑓 𝜋∕𝜔𝑟
0

d𝑡′ cos
(

2𝜔𝑟𝑡′ + 2(𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅) − 𝑓 𝜋
)

sin
(𝜔𝑟
𝑓
𝑡′
)

= 2
𝜋
𝛺(2) 𝑓 cos(𝑓 𝜋)

1 − 4𝑓 2
cos

(

2(𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅)
)

, (122)

where we have used the relationship

2𝜔𝑟𝑡2 = 2𝜔𝑟𝑡0 − 𝑓 𝜋 + 2𝜋 . (123)

With the help of the result in Eq. (122) the integral ∫ S⃝ can be simplified
o

∫ S⃝
= −2𝑆𝑧 1

4
[

𝐼𝑦 (𝑐1 + 𝑐2) − 𝐼𝑥 (𝑠1 + 𝑠2)
]

× 2
𝜋
𝛺(1) 𝑓 cos(𝑓 𝜋∕2)

1 − 𝑓 2
cos

(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

+ 2𝑆𝑧 1
4
[

𝐼𝑦 (𝑐1 − 𝑐2) − 𝐼𝑥 (𝑠1 − 𝑠2)
]

× 2
𝜋
𝛺(2) 𝑓 cos(𝑓 𝜋)

1 − 4𝑓 2
cos

(

2(𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅)
)

(124)

Collecting all results from Eqs. (114), (116) and (124), the final first
rder average Hamiltonian may be written as:

𝐻̄ (1)
𝐵 = 𝜔̄(𝑧)

𝐼 𝑆 (𝑓 ) 2𝐼𝑧𝑆𝑧

+
2
∑

𝑚=1

{

𝜔̄(𝑥,𝑚)
𝐼 𝑆 (𝑓 ) 2𝐼𝑥𝑆𝑧 + 𝜔̄(𝑦,𝑚)

𝐼 𝑆 (𝑓 ) 2𝐼𝑦𝑆𝑧
}

, (125)

where the time-independent amplitudes are given by

𝜔̄(𝑧)
𝐼 𝑆 (𝑓 ) =

√

2
𝜋
𝑏𝐼 𝑆 𝜍(𝑧)(𝑓 ) sin(2𝛽𝐼 𝑆𝑃 𝑅

)

cos
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

(126)

𝜔̄(𝑥,1)
𝐼 𝑆 (𝑓 ) =− 𝑠1 + 𝑠2

4

√

2
𝜋
𝑏𝐼 𝑆 𝜍(𝑥𝑦,1)(𝑓 ) sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

cos
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

(127)

𝜔̄(𝑦,1)
𝐼 𝑆 (𝑓 ) = 𝑐1 + 𝑐2

4

√

2
𝜋
𝑏𝐼 𝑆 𝜍(𝑥𝑦,1)(𝑓 ) sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

cos
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

(128)

𝜔̄(𝑥,2)
𝐼 𝑆 (𝑓 ) =− 𝑠1 − 𝑠2

4
1
𝜋
𝑏𝐼 𝑆 𝜍(𝑥𝑦,2)(𝑓 ) sin2

(

𝛽𝐼 𝑆𝑃 𝑅
)

cos
(

2(𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅)
)

(129)

𝜔̄(𝑦,2)
𝐼 𝑆 (𝑓 ) = 𝑐1 − 𝑐2

4
1
𝜋
𝑏𝐼 𝑆 𝜍(𝑥𝑦,2)(𝑓 ) sin2

(

𝛽𝐼 𝑆𝑃 𝑅
)

cos
(

2(𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅)
)

, (130)

where 𝜍(𝑧)(𝑓 ) has been defined in Eq. (67) and 𝜔̄(𝑧)
𝐼 𝑆 (𝑓 ) in Eq. (126)

is identical to the expression in Eq. (65). In addition, 𝜍(𝑥𝑦,1)(𝑓 ) and
𝜍(𝑥𝑦,2)(𝑓 ) are given by

𝜍(𝑥𝑦,1)(𝑓 ) = 𝜍(𝑦)(𝑓 ), see Eq. (68) (131)
𝑓 cos(𝑓 𝜋)
𝜍(𝑥𝑦,2)(𝑓 ) =
1 − 4𝑓 2

(132)
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As a result, the final general first order average Hamiltonian Eq. (125)
an be written as:

̄ (1)
𝐵 =

√

2
𝜋
𝑏𝐼 𝑆 𝜍(𝑧)(𝑓 ) sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

2𝐼𝑧𝑆𝑧

+

√

2
𝜋
𝑏𝐼 𝑆 𝜍(𝑥𝑦,1)(𝑓 ) sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

cos
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

× 2𝑆𝑧
[

𝑎(𝑦,1) 𝐼𝑦 − 𝑎(𝑥,1) 𝐼𝑥
]

+ 1
𝜋
𝑏𝐼 𝑆 𝜍(𝑥𝑦,2)(𝑓 ) sin2

(

𝛽𝐼 𝑆𝑃 𝑅
)

cos
(

2(𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅)
)

× 2𝑆𝑧
[

𝑎(𝑦,2) 𝐼𝑦 − 𝑎(𝑥,2) 𝐼𝑥
]

, (133)

where we have defined the coefficients:

𝑎(𝑥,1) = 1
4
(𝑠1 + 𝑠2) (134)

𝑎(𝑦,1) = 1
4
(𝑐1 + 𝑐2) (135)

(𝑥,2) = 1
4
(𝑠1 − 𝑠2) (136)

𝑎(𝑦,2) = 1
4
(𝑐1 − 𝑐2) (137)

The term proportional to 2𝐼𝑧𝑆𝑧 in Eq. (133) is identical to the one in
q. (69). To check the overall consistency of the result in Eq. (133) for

general rf phases 𝜙1–𝜙4 with the result in Eq. (69) for 𝜙1 = 𝜙2 = 𝜙3 =
𝜙4 = 0, we need to evaluate the factor 𝑐1, 𝑐2, 𝑠1 and 𝑠2 for this case,
which can be easily done using the definitions in Eqs. (117)–(120) and
102)–(105):

𝑎(𝑥,1) = 0 for 𝜙1 = 𝜙2 = 𝜙3 = 𝜙4 = 0 (138)

𝑎(𝑦,1) = 1 for 𝜙1 = 𝜙2 = 𝜙3 = 𝜙4 = 0 (139)
(𝑥,2) = 0 for 𝜙1 = 𝜙2 = 𝜙3 = 𝜙4 = 0 (140)

𝑎(𝑦,2) = 0 for 𝜙1 = 𝜙2 = 𝜙3 = 𝜙4 = 0. (141)

Hence in the case that the rf phase of all 180◦ pulses are set to zero, as
expected, Eq. (133) transforms into Eq. (69).

Eq. (133) is a general and powerful result as it enables us to choose
he phases 𝜙1–𝜙4 in such a way that we design the first order average

Hamiltonian of the REDOR sequence with finite rf pulses to have the
properties we desire. As discusses in the introduction of this section, a
esirable first order average Hamiltonian is solely proportional to the

longitudinal two-spin order operator 2𝐼𝑧𝑆𝑧. One advantage of this type
of average Hamiltonian is that the terms 2𝐼𝑧𝑆𝑧 commute for different
spin pairs. This means the evolution of the heteronuclear spin system
can be described as the superposition of the evolution of isolated spin
pairs.

In order to achieve an first order average Hamiltonian solely pro-
ortional to 2𝐼𝑧𝑆𝑧 the phases 𝜙1–𝜙4 must be chosen such that the

coefficients of the terms proportional to 2𝐼𝑥𝑆𝑧 and 2𝐼𝑦𝑆𝑧 in Eq. (133)
isappear, i. e. 𝑎(𝑥,1) = 𝑎(𝑦,1) = 𝑎(𝑥,2) = 𝑎(𝑦,2) = 0. Using the definitions in

Eqs. (117)–(120) and (102)–(105) this can be achieved if the following
conditions are fulfilled:

cos𝜙1 + cos(2𝜙1 − 2𝜙2 + 𝜙3
)

= 0 (142)

nd cos
(

2𝜙1 − 𝜙2
)

+ cos(2𝜙1 − 2𝜙2 + 2𝜙3 − 𝜙4
)

= 0 (143)

nd sin𝜙1 + sin(2𝜙1 − 2𝜙2 + 𝜙3
)

= 0 (144)

nd sin
(

2𝜙1 − 𝜙2
)

+ sin(2𝜙1 − 2𝜙2 + 2𝜙3 − 𝜙4
)

= 0. (145)

Solving this system of equations involving trigonometric functions is
difficult in general. However, it is straightforward to employ a com-
puter to scan the phases 𝜙1–𝜙4 in constant increments in a nested
loop and check if the conditions in Eqs. (142)–(145) are fulfilled and
valuate the coefficients in Eqs. (134)–(137).

Table 1 shows the result of stepping all phases by an increment of
𝜋∕4 (45◦) in a nested loop. According to Eq. (I-66), the total propa-
gator over the basic REDOR block in Fig. 7(C) is a product of the rf
ropagator and the average Hamiltonian propagator. Therefore, Table 1
13 
Table 1
Results for the coefficients 𝑎(𝑥,1), 𝑎(𝑦,1), 𝑎(𝑥,2) and 𝑎(𝑦,2) in Eqs. (138)–(141) for
sets of rf phases 𝜙1 ,… , 𝜙4 of the 180◦ pulses in the basic REDOR building
block shown in Fig. 7(C).

𝜙1 0 0 0 0 0 0 0 0
𝜙2 0 𝜋 𝜋∕2 0 𝜋 𝜋∕2 𝜋∕4 3𝜋∕4
𝜙3 0 0 𝜋∕2 𝜋 𝜋 0 −𝜋∕2 𝜋∕2
𝜙4 0 𝜋 0 𝜋 0 𝜋∕2 −𝜋∕4 −3𝜋∕4

𝑎(𝑥,1) 0 0 −1∕2 0 0 0 0 0
𝑎(𝑦,1) 1 0 1∕2 0 0 0 0 0
𝑎(𝑥,2) 0 0 0 0 0 0 0 0
𝑎(𝑦,2) 0 1 0 0 0 0 0 0

𝑈𝐴(𝑡1 + 𝑇 , 𝑡1) 1 1 1 1 1 −1 𝑅𝑧(𝜋) 𝑅𝑧(𝜋)

also lists the rf propagator 𝑈𝐴(𝑡1 + 𝑇 , 𝑡1). As discussed in section I-3.3,
referably, the basic REDOR block is cyclic, i. e. 𝑈𝐴(𝑡1 + 𝑇 , 𝑡1) = ±1.
his condition is straightforwardly fulfilled if all phases 𝜙1–𝜙4 are zero,
owever, for arbitrary values for the phases 𝜙1–𝜙4, the rf propagator
𝐴(𝑡1 + 𝑇 , 𝑡1) needs to be calculated explicitly.

The first column of Table 1 recapitulates the results for
{𝜙1, 𝜙2, 𝜙3, 𝜙4} = {0, 0, 0, 0} shown in Eqs. (138)–(141). The second
olumn shows the results for an intuitive choice for the sequence of
hases given by {𝜙1, 𝜙2, 𝜙3, 𝜙4} = {0, 𝜋 , 0, 𝜋}. However, as it turns out
(𝑦,2) is not zero for this choice of phases, an undesirable result.

Highlighted in yellow in Table 1 are three fundamental choices
or the phase sequence {𝜙1, 𝜙2, 𝜙3, 𝜙4} for which all coefficients fulfil
i) 𝑎(𝑥,1) = 𝑎(𝑦,1) = 𝑎(𝑥,2) = 𝑎(𝑦,2) = 0 and (ii) 𝑈𝐴(𝑡1 + 𝑇 , 𝑡1) =
1. Interestingly, two choices are {𝜙1, 𝜙2, 𝜙3, 𝜙4} = {0, 0, 𝜋 , 𝜋} and
0, 𝜋 , 𝜋 , 0}, which resemble the phases in the basic building blocks of

the MLEV sequences used for the train of 180◦ pulses in broadband
heteronuclear decoupling or the CPMG sequence [66–69]. Furthermore,
the third solution {𝜙1, 𝜙2, 𝜙3, 𝜙4} = {0, 𝜋∕2, 0, 𝜋∕2} corresponds to
the XY-4 phase sequence [60,61,70] that is both used in the CPMG
sequence and has together with its extensions, the XY-8 and XY-16
sequences, commonly been the choice for the rf phases of the pulses in
the REDOR sequence. Both the MLEV and XY type of phase sequences
were originally constructed to compensate a series of 180◦ pulses with
respect to rf resonance offsets and rf amplitude errors [60–63,66–70].

The cyclicity restriction 𝑈𝐴(𝑡1+𝑇 , 𝑡1) = ±1 can be slightly lifted and
solutions be permitted, in which the rf propagator corresponds to an
overall 𝑧-rotation, 𝑈𝐴(𝑡1 + 𝑇 , 𝑡1) = 𝑅𝑧(2𝜋∕𝑘), where 𝑘 is an integer, as
epeating this pulse sequence block 𝑘-times results in an overall cyclic

pulse sequence again. An abundant number of solutions resulting in an
overall 𝑧-rotation can be found, Table 1 includes two of the simplest
olutions of this kind with 𝑈𝐴(𝑡1 + 𝑇 , 𝑡1) = 𝑅𝑧(𝜋).

If the phase sequence {𝜙1, 𝜙2, 𝜙3, 𝜙4} is chosen such that all coeffi-
cients disappear, 𝑎(𝑥,1) = 𝑎(𝑦,1) = 𝑎(𝑥,2) = 𝑎(𝑦,2) = 0, the first order average
Hamiltonian in Eq. (125) simplifies to
𝐻̄ (1)
𝐵 = 𝜔̄(𝑧)

𝐼 𝑆 (𝑓 ) 2𝐼𝑧𝑆𝑧, (146)

where 𝜔̄(𝑧)
𝐼 𝑆 (𝑓 ) is given in Eq. (126). The resulting first order average

Hamiltonian can be written as:

𝐻̄ (1)
𝐵 =

√

2
𝜋
𝑏𝐼 𝑆 𝜍(𝑧)(𝑓 ) sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

sin
(

𝜔𝑟𝑡0 − 𝛾𝐼 𝑆𝑃 𝑅
)

2𝐼𝑧𝑆𝑧, (147)

which is solely proportional to 2𝐼𝑧𝑆𝑧 as the average Hamiltonian
q. (31) of the original REDOR sequence with indefinitely short pulses

with phase zero. However, the amplitudes 𝜔̄(𝑧)
𝐼 𝑆 (𝑓 ) in Eq. (126) for the

case of finite pulses are scaled compared to the amplitudes 𝜔̄(𝑧)
𝐼 𝑆 in

Eq. (30) for indefinitely short pulses:

𝜔̄(𝑧)
𝐼 𝑆 (𝑓 ) = 𝜍(𝑧)(𝑓 ) 𝜔̄(𝑧)

𝐼 𝑆 , (148)

where limits of the scaling factor 𝜍(𝑧)(𝑓 ) for 𝑓 → 0 and 𝑓 → 1 have be
hown above in Eqs. (70) and (73), respectively.

In case the basic REDOR pulse sequence block of duration 𝑇 is
cyclic, the propagator in first order average Hamiltonian theory over
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a duration 𝜏 = 𝑁 𝑇 that is an integer multiple of 𝑇 is given by
𝑈 (𝑡0 + 𝜏 , 𝑡0) = exp{−i𝐻̄ (1)

𝐵 𝜏}

= exp{−i 𝜔̄(𝑧)
𝐼 𝑆 (𝑓 ) 𝜏 2𝐼𝑧𝑆𝑧} (149)

analogous to the case of infinitely short pulses shown in Eq. (33). Sim-
larly, the 𝑆-spin-echo intensity under a REDOR sequence of duration
for a single crystallite orientation is given by:

𝑆(𝜏; 𝑓 ;𝛺𝐼 𝑆
𝑃 𝑅) = cos

(

𝜔̄(𝑧)
𝐼 𝑆 (𝑓 ) 𝜏

)

(150)

In a powder sample the final 𝑆-spin signal as a function of the duration
𝜏 of the REDOR sequence is obtained by averaging over all possible
rientations 𝛺𝐼 𝑆

𝑃 𝑅:

𝑆(𝜏 , 𝑓 ) =
⟨

cos
(

𝜔̄(𝑧)
𝐼 𝑆 (𝑓 ) 𝜏

)⟩

𝛺𝐼 𝑆𝑃 𝑅
(151)

Similarly to the case of REDOR with ideal pulses the integral in
q. (151) can be expressed using the Bessel functions:

𝑆(𝜏 , 𝑓 ) = 𝜋

2
√

2
𝐽−1∕4

(

𝜍(𝑧)(𝑓 )

√

2
2𝜋

𝑏𝐼 𝑆 𝜏
)

𝐽1∕4

(

𝜍(𝑧)(𝑓 )

√

2
2𝜋

𝑏𝐼 𝑆 𝜏
)

(152)

Fig. 10(B) shows the result of calculating 𝑆(𝜏 , 𝑓 ) in Eqs. (151) and (152)
or a dipolar coupling constant 𝑏𝐼 𝑆∕2𝜋 = 950 Hz and three different

values 𝑓 = 0.0, 0.7 and 1.0. Unlike in the case depicted in (A), for
all values of 𝑓 the graphs have the identical overall shape, solely the
frequency of the oscillations decreases slightly when moving from 𝑓 = 0
to 𝑓 = 1. As a result if the REDOR sequence employing pulses of finite
length is used, i. e. basically in all experimentally realistic cases, is used
to determine heteronuclear dipolar couplings, and hence heteronuclear
internuclear distances, the factor 𝑓 has to be taken into account in
the analysis, otherwise the resulting heteronulcear dipolar couplings
appear weaker than they really are, leading to an overestimate in the
internuclear distances [43].

A recent review by Ladizhansky et al. covers further developments
f the REDOR pulse sequence [19]: In frequency-selective REDOR (FS-

REDOR) [71], selective 180◦ pulses are used to generate the spin-echo,
hich allows to select specific heteronuclear spin pairs in multiple

spin systems. Gullion and Schaefer achieved scaling of the recoupled
eteronuclear dipolar coupling Hamiltonian by shifting one of the
80◦ pulses in the basic REDOR block referred to as Shifted-REDOR
S-REDOR) experiment [2,3]. This principle can be used to imple-
ent a constant-time version of the REDOR pulse sequence similar to

he one shown in Fig. 6, in which the total recoupling time period
𝜏 is fixed and the spin-echo amplitude is recorded as function of
he time-offset of every other 180◦ pulse from their original position
2,3]. This implementation resembles the dipolar and chemical shift

(DIPSHIFT) correlation experiment [72–74]. Furthermore, as discussed
elow Eq. (31) in rotor-encoded spectroscopy [44,45] the two REDOR
𝐼-spin irradiation blocks during the 𝑆-spin-echo shown in Fig. 6 are
shifted with respect to each other. The same principle can be used
o scale the recoupled heteronuclear dipolar Hamiltonian [46]. As we

have seen above, the conventional implementation of REDOR with two
80◦ pulses per rotational period requires the nutation frequency of
he rf field to be at least equal to the sample rotation frequency, see
q. (40), which might be difficult to achieve at fast sample spinning
hen the REDOR sequence is applied to nuclei with small gyromag-

netic ratios such as 15N. Jain et al. introduced the deferred rotational
cho double resonance (DEDOR) sequence, in which two 180◦ pulses

are applied per 3 rotational periods, reducing the minimum rf field
equirement by a factor of 1∕3 [75].

Although REDOR has been successfully employed to recouple het-
ronuclear dipolar couplings and determine distances between nuclei
f which one type is protons [46,76–78], it is arguably not the ideal

choice in dense proton networks, as for realistic, finite pulses REDOR
lso recouples the homonuclear dipolar 1H⋯1H couplings if applied

to the 1H nuclei. As superior alternative, especially for this applica-
ion, Brinkmann and Kentgens have presented the symmetry-based rf
14 
pulse sequence SR421, which generates the desirable first order average
Hamiltonian proportional to heteronuclear longitudinal two-spin-order
(2𝐼𝑧𝑆𝑧), while decoupling the homonuclear proton dipolar interactions
[79,80].

3. Lee-Goldburg homonuclear dipolar decoupling

In the second part of this tutorial paper we direct our attention
to another important example for the application of average Hamilto-
nian theory in solid-state NMR, the design of rf pulse sequences that
decouple the homonuclear dipolar coupling, especially targeting the
strong homonuclear 1H⋯H1 dipolar couplings, enabling the recording
of well-resolved 1H NMR spectra in the solid-state. In static solids
several homonuclear decoupling techniques have been developed. The
original Lee-Goldburg (LG) scheme for homonuclear decoupling applies
unmodulated rf irradiation off resonance on the 1H, so as to satisfy the
Lee-Goldburg condition [4,5]. This sequence will be discussed in detail in
his section employing average Hamiltonian theory. However, because
f its relatively poor performance, this technique has been superseded
y more effective schemes including WAHUHA (WHH-4) [81], MREV-

8 [82–84], BR-24, BR-52 [85], and BLEW-48 [86]. Furthermore, in
order to improve the homonuclear decoupling performance, Mehring
and Waugh suggested the Flip-Flop Lee-Goldburg (FFLG) experiment,
in which a tilted rf coil is employed to alternate the direction of
he effective field satisfying the Lee-Goldburg condition by applying
imultaneously a constant magnetic field with alternating signs along
he 𝑧-axis together with an rf field along the 𝑥-axis with rf phases
lternating between 0 and 𝜋 [6,7]. The same can be achieved by
witching the frequency of the rf field in a phase-continuous way,
esulting in the Frequency-Switched Lee-Goldburg (FSLG) sequence by
evitt and co-workers [8,9]. The aspects that lead to the improved
erformance of the FSLG sequence (and therefore the FFLG sequence)
s discussed in detail below. The switching of the rf frequency may be
mplemented using linear ramps of the rf phase, resulting in the Phase-
odulated Lee-Goldburg (PMLG) sequence [87–89], which has been

urther improved resulting in the LG4 sequence [90,91]. The above se-
quences can be combined with MAS (combined multiple pulse NMR and
magic angle spinning, CRAMPS) resulting in significantly improved 1H
spectral resolution [92]. Rather than using average Hamiltonian theory,
the DUMBO (‘‘decoupling using mind-boggling optimization’’) sequence
has been developed by numerical optimization using a two-spin system
[93,94]. Furthermore, a highly successful approach has been the direct
optimization of this type of sequence directly on the NMR spectrom-
eter, which led to the eDUMBO sequence, since imperfections in the
xperimental setup are inherently included in the optimization [95].

Recently, Paruzzo and Emsley, published an excellent, comprehensive
comparison study and detailed experimental protocol covering the LG,
WHH-4, MREV-8, BR-24, FSLG/PMLG, DUMBO, eDUMBO and LG4
homonuclear decoupling sequences [96].

3.1. Hamiltonians of the chemical shift and homonuclear dipolar coupling

In order to analyse both the LG and FFLG/FSLG homonuclear de-
coupling sequences using average Hamiltonian theory, we consider for
simplicity a homonuclear two-spin-1∕2 system with spins labelled 𝐼𝑗
and 𝐼𝑘., respectively. In a static solid the nuclear spin Hamiltonian
is comprised of the chemical shift and direct homonuclear dipolar
coupling interactions, which are presented in detail in Appendices C.7
and C.8.1, respectively.

3.1.1. Chemical shift
The combined Hamiltonian for the Zeeman and chemical shift inter-

actions for spin 𝐼 in the high-field approximation and in the rotating
𝑗
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Fig. 11. (A) Molecular structure of the hydrogen maleate anion in the geometry
optimized crystal structure of potassium hydrogen maleate [97]. The twofold symmetry
axis 𝐶2 and the two mirror planes 𝜎𝜈 and 𝜎′𝜈 for the 𝐶2𝜈 symmetry of the hydrogen
maleate anion are shown. (B) Ovaloids representing the CSA tensors, i. e. the anisotropic
components of the full chemical shift tensors, of the two C H protons. The colours
orange and blue represent positive and negative chemical shift values, respectively.
The principal axis of the chemical shift tensors as determined by Achlama et al. are
depicted [98]. The principal values are given by (𝛿𝑋 𝑋 , 𝛿𝑌 𝑌 , 𝛿𝑍 𝑍 ) = (9.2, 7.0, 4.3) ppm
[98], where the original chemical shift referencing with respect to solid adamantane
was converted to neat TMS [99,100]. The isotropic, anisotropic chemical shifts
and asymmetry parameter are given by (𝛿iso , 𝛿aniso , 𝜂) = (6.8 ppm,−2.5 ppm, 0.87),
respectively. The homonuclear 1H–1H homonuclear dipolar coupling constant is given
by 𝑏𝑗 𝑘∕2𝜋 = −9400 Hz, corresponding to an internuclear distance of 𝑟𝑗 𝑘 = 233.8 pm. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

frame is given in Eq. (C.35) and can be written as:
𝐻Z,CS
𝑗 = 𝜔CS

𝑗 𝐼𝑗 𝑧
= 𝜔CS

𝑗 𝑇 𝑗10, (153)

where 𝑇 𝑗10 is the 0th component of the irreducible spherical spin tensor
of rank 1 for spin 𝐼𝑗 as defined in Table C.1 and we have introduced
the chemical shift frequency

𝜔CS
𝑗 = 𝛺iso

𝑗 + 𝜔CSA
𝑗 , (154)

where the isotropic chemical shift frequency 𝛺iso
𝑗 is defined in Eq.

(C.34), and the chemical shift anisotropy (CSA) frequency 𝜔CSA
𝑗 is

defined as
𝜔CSA
𝑗 = [𝐴CS

20 ]
𝐿

=
2
∑

𝑚=−2
[𝐴CS

2𝑚]
𝑃𝐷(2)

𝑚0
(

𝛺𝑗
𝑃 𝐿

)

, (155)

where [𝐴CS
20 ]

𝐿 and [𝐴CS
2𝑚]

𝑃 are components of the 2nd rank CSA tensor
in the laboratory frame and PAS, respectively, listed in Table C.2. The
Euler angles 𝛺𝑗

𝑃 𝐿 = {𝛼𝑗𝑃 𝐿, 𝛽
𝑗
𝑃 𝐿, 𝛾

𝑗
𝑃 𝐿} define the relative orientation

of the PAS and the laboratory frame and are random variables in a
powdered sample.

As an example Fig. 11 depicts the CSA tensors of the two CH protons
in potassium hydrogen maleate (KHM) as ovaloids according to Mueller
and co-workers [101]. Fig. 12(A) and (D) show numerically simulated
1H spectra of the two-1H spin system of the two CH groups in a
powdered sample of KHM, (A) solely considering the isotropic chemical
15 
Fig. 12. Numerically simulated spectra of the two-1H spin system depicted in the
small inset on the top and fully in Fig. 11(B) at an external field of 9.4 T and static
sample conditions: first row (A)–(C) solely considering the isotropic chemical shift;
second row (D)–(F) including the isotropic and anisotropic chemical shifts; third row
(G)–(I) considering the isotropic chemical shift and the homonuclear dipolar coupling;
fourth row (J)–(L) including all spin interactions, i. e. the isotropic, anisotropic chemical
shifts and the homonuclear dipolar coupling. first column (A), (D), (G), (J) without
the application of an rf field during acquisition; second column (B), (E), (H), (K)
under constant rf irritation at the LG condition employing an effective rf field of
𝜔eff∕2𝜋 = 100 kHz; third column (C), (F), (I), (L) under FSLG irradiation using an
effective rf field of 𝜔eff∕2𝜋 = 100 kHz. All numerical simulations were performed
using the Simpson package version 4.2.3 [103–105] using a 1H Larmor frequency
of 𝜔0∕2𝜋 = −400 MHz and 50 Hz exponential line broadening.

shift and (D) including both the isotropic and anisotropic chemical
shifts. As shown in Fig. 11(A) the two CH groups are symmetry related
and therefore the 1H spectra only show a single resonance line, where
panel (D) shows a typical CSA powder pattern [102].

3.1.2. Homonuclear dipolar coupling
As described in detail in Appendix C.8.1 The nuclear spin Hamilto-

nian of the direct homonuclear dipolar coupling in static solids between
two nuclear spins 𝐼𝑗 and 𝐼𝑘 in the high-field approximation and in the
rotating frame is given by:

𝐻DD
𝑗 𝑘 = 𝜔DD

𝑗 𝑘
1
√

6

(

2𝐼𝑗 𝑧𝐼𝑘𝑧 −
1
2
(

𝐼−𝑗 𝐼
+
𝑘 + 𝐼+𝑗 𝐼

−
𝑘
)

)

= 𝜔DD
𝑗 𝑘 𝑇 𝑗 𝑘20 , (156)

where 𝑇 𝑗 𝑘20 is the 0th component of the irreducible spherical spin
tensor of rank 2 for the two spins 𝐼𝑗 and 𝐼𝑘 as defined in Table C.1.
Analogous to the steps described in Section 2.1.1, the time-independent
dipolar frequency 𝜔DD

𝑗 𝑘 is obtained by transforming the tensor of the
homonuclear dipolar coupling from the PAS to the laboratory frame:
𝜔DD
𝑗 𝑘 =

√

6 𝑏𝑗 𝑘 𝐷(2)
00
(

𝛺𝑗 𝑘
𝑃 𝐿

)

=
√

6 𝑏𝑗 𝑘 𝑑(2)00
(

𝛽𝑗 𝑘𝑃 𝐿
)

=
√

6 𝑏𝑗 𝑘 1
2

(

3 cos2 𝛽𝑗 𝑘𝑃 𝐿 − 1
)

, (157)

where the Euler angles 𝛺𝑗 𝑘
𝑃 𝐿 = {𝛼𝑗 𝑘𝑃 𝐿, 𝛽

𝑗 𝑘
𝑃 𝐿, 𝛾

𝑗 𝑘
𝑃 𝐿} define the relative orien-

tation of the PAS and the laboratory frame and are random variables in
a powdered sample. We note that for simplicity we have used different
sets of Euler angles 𝛺𝑗

𝑃 𝐿 and 𝛺𝑗 𝑘
𝑃 𝐿 to describe the transformation from

the PAS directly to the laboratory frame for the CSA tensor for spin
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𝐼𝑗 and the homonuclear dipolar coupling, respectively. In practise, to
perform numerical powder averaging it proves often useful to introduce
an intermediate reference frame, the molecular frame, fixed on the
molecule into which all interactions are transformed first from their
respective PAS. In a second step the interactions are transformed from
the molecular frame to the laboratory frame, where the corresponding
Euler angles are random variables in a powder. This is described in
more detail in Appendix C.3.

As defined in Appendix C.8.1, the homonuclear dipolar coupling
constant 𝑏𝑗 𝑘 is given by

𝑏𝑗 𝑘 = − 𝜇0
4𝜋

𝛾2𝐼ℏ

𝑟3𝑗 𝑘
, (158)

where in the Appendix examples of typical homonuclear dipolar cou-
pling constants are given, which are also depicted in Fig. 2.

Fig. 12(G) shows the numerically simulated 1H powder pattern
of the two-1H spin system in KHM shown in Fig. 11 including the
homonuclear dipolar coupling and the isotropic chemical shift. The
spectrum resembles the typical Pake doublet of a homonuclear dipolar
coupled spin-1∕2 pair [33]. The distance between the two inner discon-
tinuities is equal to 3∕2 × 𝑏𝑗 𝑘∕2𝜋, i. e. 1.5 times the the homonuclear
dipolar coupling constant. Furthermore, in Fig. 12(J), the result of a
numerical simulation including in addition the CSA tensors of the two
CH protons are shown. The spectrum clearly shows the effect of the
tensor interplay [106] between the homonuclear and CSA interactions.

3.2. Lee-Goldburg (LG) homonuclear decoupling

In this section we will introduce the original Lee-Goldburg sequence
and use first-order average Hamiltonian theory to understand how it
achieves homonuclear dipolar decoupling. Furthermore, the limitations
of this sequence will become evident in the second-ordered average
Hamiltonian, which can be overcome by the FFLG and FSLG sequences
discussed in the following section.

Fig. 13(A) shows the basic building block of the LG sequence:
Continuous, windowless, rf irradiation is applied to the 𝐼-spins with
a nutation frequency 𝜔nut and frequency offset 𝛥. As shown in Fig. 14,
if the rf phase is chosen to be 𝜙 = 0, this results in an effective field
with effective nutation frequency 𝜔eff, where the vector of the rotation
axis lies in the 𝑥𝑧-plane and encloses the angle 𝜃 with the 𝑧-axis. 𝜔eff
and 𝜃 are given in Eqs. (I-22) and (I-23), respectively, but are repeated
here for clarity:

𝜔eff =
√

𝜔2
nut + 𝛥2 (159)

𝜃 = ar ct an(𝜔nut∕𝛥), (160)

where the Lee-Goldburg condition is fulfilled if 𝜔nut and 𝛥 are chosen
such that 𝜃 is equal to the magic angle, i. e. 𝜃 = ar ct an

√

2 ≈ 54.74◦.
The starting time point of the LG irradiation is denoted 𝑡0 and for

the purpose of the analysis by average Hamiltonian theory, a sequence
of length 𝑇 = 𝜏𝑐 is considered, such that 𝜔eff 𝜏𝑐 = 2𝜋 and end time point
is given by 𝑡2 = 𝑡1 + 𝑇 .

3.2.1. Hamiltonian
The Hamiltonian of the homonuclear two-spin system 𝐼𝑗 and 𝐼𝑘 in

the presence of the LG irradiation is time-independent in the rotating
frame and contains the contribution 𝐻rf from the interaction with the
rf field and the contribution 𝐻int from the internal spin interactions,
consisting of the chemical shift and homonuclear dipolar interactions,
Eqs. (153) and (156), respectively:
16 
Fig. 13. Building blocks of the (A) Lee-Goldburg (LG) and (B) Frequency-Switched
Lee-Goldburg (FSLG) homonuclear recoupling sequences, where 𝛥 and −𝛥 are the rf
frequency offsets, 𝜙 = 0, 𝜋 the rf phases, 𝜔eff the effective nutation frequency and 𝜏𝑐
the duration of the elementary cycles.

Fig. 14. Details of the rf field settings during the LG and FSLG pulse sequences: (A)
At a phase of 𝜙 = 0 the positive rf frequency offset 𝛥 of the rf field and the nutation
frequency 𝜔nut are chosen such that the resulting effective field encloses the magic
angle 𝜃 = ar ct an√2 with the positive 𝑧-axis. (B) At the same nutation frequency 𝜔nut
together with the negative rf frequency offset −𝛥 and rf phase 𝜙 = 𝜋, the resulting
effective field encloses the angle 𝜋 − 𝜃𝑚 with the positive 𝑧-axis. (C) Depiction of the
relevant rf frequencies in relation to the NMR spectrum.

𝐻 = 𝐻rf +𝐻int

= 𝛥 𝐼𝑧 + 𝜔nut 𝐼𝑥
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝐻𝐴

+𝜔CS
𝑗 𝑇 𝑗10 + 𝜔

CS
𝑘 𝑇 𝑘10

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻CS

,+𝜔DD
𝑗 𝑘 𝑇 𝑗 𝑘20

⏟⏞⏟⏞⏟
𝐻DD

, (161)
𝐵 𝐵
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where the Hamiltonian has been split into three parts 𝐻𝐴, 𝐻CS
𝐵 , and

DD
𝐵 which will enable us to transform 𝐻 into the interaction frame of

𝐻𝐴 before the application of average Hamiltonian theory as described
n section (I-3.2).

As described in detail in section I-2.4, the rf Hamiltonian of an
ff-resonance rf field can be expressed with the help of the effective

nutation frequency 𝜔eff, see Eq. (I-24):

𝐻𝐴 = 𝜔eff 𝑅𝑦(𝜃) 𝐼𝑧 𝑅𝑦(−𝜃), (162)

where 𝑅𝑥(𝛽), 𝑅𝑦(𝛽) and 𝑅𝑧(𝛽) are the operators for the rotation of the
𝐼-spins about the 𝑥-, 𝑦- and 𝑧-axis, respectively, as defined in section
I-2.4, however here using the total spin angular momentum operators:

𝐼𝑥 = 𝐼𝑗 𝑥 + 𝐼𝑘𝑥 𝐼𝑦 = 𝐼𝑗 𝑦 + 𝐼𝑘𝑦 𝐼𝑧 = 𝐼𝑗 𝑧 + 𝐼𝑘𝑧. (163)

We noted above that the Hamiltonian in Eq. (161) is time-independent
nd therefore according to the discussion in I-2.2 the propagator can be
alculated directly using Eq. (I-7). However, this requires to determine
he matrix exponential of the Hamiltonian, which is in general not
nalytically possible even for a two-spin-1∕2 system, but needs a nu-
erical approach. Furthermore, a numerical approach cannot provide

he physically intuitive insight into the operating principles of pulse
equences that average Hamiltonian theory can provide.

3.2.2. Rf propagator
In order to transform the Hamiltonian 𝐻 in Eq. (161) into the

interaction frame of the rf field Hamiltonian 𝐻𝐴, we need to calculate
he rf propagator, which is straightforward based on Eq. (I-25):

𝑈𝐴(𝑡, 𝑡0) = 𝑅𝑦(𝜃)𝑅𝑧
(

𝜔eff(𝑡 − 𝑡0)
)

𝑅𝑦(−𝜃) (164)

In addition, we need the adjoint of the rf propagator for the transfor-
ation into the interaction frame:

𝑈†
𝐴(𝑡, 𝑡0) = 𝑅𝑦(𝜃)𝑅𝑧

(

−𝜔eff(𝑡 − 𝑡0)
)

𝑅𝑦(−𝜃)

= 𝑅𝑦(𝜃)𝑅
(

𝛺eff
)

, (165)

where 𝑅
(

𝛺
)

denotes the rotation by the rf field through the three Euler
ngles 𝛺 = {𝛼 , 𝛽 , 𝛾} [25,107]:

𝑅
(

𝛺
)

= 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑦(𝛾). (166)

Hence the Euler angles 𝛺eff ion Eq. (165) are given by

𝛺eff =
{

−𝜔eff(𝑡 − 𝑡0),−𝜃 , 0
}

(167)

3.2.3. Interaction frame Hamiltonian
As the original Hamiltonian 𝐻 in Eq. (161) contains contributions

rom two spin interactions, the chemical shift 𝐻CS
𝐵 and homonuclear

ipolar coupling 𝐻DD
𝐵 , the total interaction frame Hamiltonian 𝐻̃𝐵(𝑡)

will also be written as the sum of those two contributions transformed
into the interactions frame:
̃𝐵(𝑡) = 𝐻̃DD

𝐵 (𝑡) + 𝐻̃CS
𝐵 (𝑡) (168)

where 𝐻̃DD
𝐵 (𝑡) and 𝐻̃CS

𝐵 (𝑡) are the time-dependent interaction frame
Hamiltonians of the homonuclear dipolar and chemical shift interac-
ions, respectively.

Homonuclear dipolar coupling. Firstly, the time-dependent interaction
rame Hamiltonian of the homonuclear dipolar interaction can be
enerated employing the propagator 𝑈†

𝐴(𝑡, 𝑡0) of Eq. (165):
̃ DD
𝐵 (𝑡) = 𝑈𝐴(𝑡, 𝑡0)†𝐻DD

𝐵 𝑈𝐴(𝑡, 𝑡0)
= 𝜔DD

𝑗 𝑘 𝑅𝑦(𝜃)𝑅
(

𝛺eff
)

𝑇 𝑗 𝑘20 𝑅
(

−𝛺eff
)

𝑅𝑦(−𝜃)

= 𝜔DD
𝑗 𝑘 𝑅𝑦(𝜃)

( 2
∑

𝜇=−2
𝑇 𝑗 𝑘2𝜇 𝐷

(2)
𝜇0
(

𝛺eff
)

)

𝑅𝑦(−𝜃)

= 𝜔DD
𝑗 𝑘 𝑅𝑦(𝜃)

( 2
∑

𝜇=−2
𝑇 𝑗 𝑘2𝜇 exp

(

i𝜇 𝜔eff(𝑡 − 𝑡0)
)

𝑑(2)𝜇0
(

−𝜃
)

)

𝑅𝑦(−𝜃) (169)
17 
where we have used the rotation properties of the irreducible spherical
spin tensor 𝑇 𝑗 𝑘𝜆 of rank 𝜆 [25,107] together with the definitions of the

igner-D and Wigner-d matrices 𝐷(𝑙)
𝑚𝑚′ and 𝑑(𝑙)𝑚𝑚′ , respectively [25,28].

Chemical shift. Secondly, the time-dependent interaction frame Hamil-
onian of the chemical shift interaction can be generated using the
ropagator 𝑈†

𝐴(𝑡, 𝑡0) of Eq. (165):

𝐻̃CS
𝐵 (𝑡) = 𝑈𝐴(𝑡, 𝑡0)†𝐻CS

𝐵 𝑈𝐴(𝑡, 𝑡0)
=

∑

𝑙=𝑗 ,𝑘
𝜔CS
𝑙 𝑅𝑦(𝜃)𝑅

(

𝛺eff
)

𝑇 𝑙10 𝑅
(

−𝛺eff
)

𝑅𝑦(−𝜃)

=
∑

𝑙=𝑗 ,𝑘
𝜔CS
𝑙 𝑅𝑦(𝜃)

( 1
∑

𝜇=−1
𝑇 𝑙1𝜇 𝐷

(1)
𝜇0
(

𝛺eff
)

)

𝑅𝑦(−𝜃)

=
∑

𝑙=𝑗 ,𝑘
𝜔CS
𝑙 𝑅𝑦(𝜃)

( 1
∑

𝜇=−1
𝑇 𝑙1𝜇 exp

(

i𝜇 𝜔eff(𝑡 − 𝑡0)
)

𝑑(1)𝜇0
(

−𝜃
)

)

𝑅𝑦(−𝜃)

(170)

3.2.4. First order average Hamiltonian and propagator
Analogous to the interaction frame Hamiltonian Eq. (168), the first

order average Hamiltonian under LG irradiation will be written as the
um of the first order average Hamiltonian of the homonuclear dipolar
nd chemical shift interactions:

𝐻̄ (1)
𝐵 = 𝐻̄DD(1)

𝐵 + 𝐻̄CS(1)
𝐵 , (171)

where the first order average Hamiltonians are calculated according to
Eq. (I-30).

Homonuclear dipolar coupling: The first order average Hamiltonian of
the homonuclear dipolar coupling is given by:

𝐻̄DD(1)
𝐵 = 1

𝑇 ∫

𝑡1

𝑡0
d𝑡 𝐻̃DD

𝐵 (𝑡)

= 𝜔DD
𝑗 𝑘 𝑅𝑦(𝜃)

( 2
∑

𝜇=−2
𝑇 𝑗 𝑘2𝜇 𝑑

(2)
𝜇0
(

−𝜃
) 1
𝑇 ∫

𝑇

0
d𝑡′ exp

(

i𝜇 𝜔eff 𝑡
′)
)

𝑅𝑦(−𝜃),

(172)

where without loss of generality we have chosen 𝑡0 = 0 and 𝑡1 = 𝑇 to
simplify the result. The integral over the duration of the LG irradiation
can be evaluated in the following way:
1
𝑇 ∫

𝑇

0
d𝑡′ exp

(

i𝜇 𝜔eff 𝑡
′) = − i

2𝜋 𝜇
[

exp
(

i𝜇 𝜔eff 𝑡
′)
]𝜏𝑐

0

= i
2𝜋 𝜇

(

1 − exp(i 2𝜋 𝜇)
)

=

{

0 for 𝜇 ≠ 0
1 for 𝜇 = 0, (173)

where the case 𝜇 = 0 can be easily calculated using the limit of 𝜇 → 0
(in spite of 𝜇 being integer) together with the approximations cos 𝛼 ≈ 1
and sin 𝛼 ≈ 𝛼 for small 𝛼 ≪ 1. We are left with the simplified expression

𝐻̄DD(1)
𝐵 = 𝜔DD

𝑗 𝑘 𝑅𝑦(𝜃) 𝑇
𝑗 𝑘
20 𝑑

(2)
00
(

−𝜃
)

𝑅𝑦(−𝜃)

= 0, (174)

where, we have used the property of the Wigner d-matrix element
𝑑(2)00 (±𝜃) = (3 cos2 𝜃 − 1)∕2 = 0 at the magic angle 𝜃 = ar ct an

√

2, as has
been previously discussed in Section 2.1.1. The result Eq. (174) is the
reason the original LG sequence is referred to as a homonuclear dipolar
decoupling sequence. We note that the rotation and averaging of the
2nd rank spin tensor by the rf field is analogous to the rotation and
averaging of the 2nd rank spatial tensor during MAS, see Section 2.1.2
and Appendix C.10.
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Fig. 15. Illustration of the trajectory of a starting 𝑦-magnetization vector under the
first order average Hamiltonian under a LG or FSLG pulse sequence. The magnetization
vector rotates in a plane whose normal encloses the angle 𝜃 = ar ct an√2 with the
positive 𝑧-axis, where the accumulated phase is given by 𝛷 = 𝜔CS𝜏∕

√

3.

Chemical shift: The first order average Hamiltonian of the chemical
shift interactions is given by:

𝐻̄CS(1)
𝐵 = 1

𝑇 ∫

𝑡1

𝑡0
d𝑡 𝐻̃CS

𝐵 (𝑡)

=
∑

𝑙=𝑗 ,𝑘
𝜔CS
𝑙 𝑅𝑦(𝜃)

( 1
∑

𝜇=−1
𝑇 𝑙1𝜇 𝑑

(1)
𝜇0
(

−𝜃
)

× 1
𝑇 ∫

𝑇

0
d𝑡′ exp

(

i𝜇 𝜔eff 𝑡
′)
)

𝑅𝑦(−𝜃)

=
∑

𝑙=𝑗 ,𝑘
𝜔CS
𝑙 𝑅𝑦(𝜃) 𝑇 𝑙10 𝑑

(1)
00
(

−𝜃
)

𝑅𝑦(−𝜃)

= 𝑅𝑦(𝜃)
(

∑

𝑙=𝑗 ,𝑘
1
√

3
𝜔CS
𝑙 𝑇 𝑙10

)

𝑅𝑦(−𝜃), (175)

where, we have used 𝑑(1)00 (𝜃) = cos 𝜃 = 1∕
√

3 at the magic angle
𝜃 = ar ct an

√

2. The last line has the same form as the original Hamilto-
nian of the chemical shift interaction Eq. (153) scaled by 1∕

√

3 and
rotated around the 𝑦-axis in the rotating frame by the magic angle
𝜃 = ar ct an

√

2.

Propagator: The duration 𝑇 = 𝜏𝑐 of the basic building block of the LG
sequence shown in Fig. 13 was chosen such that 𝜔eff 𝜏𝑐 = 2𝜋, hence the
rf propagator Eq. (164) over that time interval is cyclic:

𝑈𝐴(𝑡1, 𝑡0) = 𝑈𝐴(𝑡0 + 𝜏𝑐 , 𝑡0) = 1. (176)

Therefore, the propagator in first order average Hamiltonian theory
over a duration 𝜏 = 𝑁 𝑇 , where 𝑁 is an integer, of LG irradiation is
given by
𝑈 (𝑡0 + 𝜏 , 𝑡0) = exp{−i𝐻̄ (1)

𝐵 𝜏}

= exp{−i𝐻̄CS(1)
𝐵 𝜏}

= 𝑅𝑦(𝜃)𝑅𝑧

(

∑

𝑙=𝑗 ,𝑘
1
√

3
𝜔CS
𝑙 𝜏

)

𝑅𝑦(−𝜃) (177)

according to Eq. (I-70). The propagator in Eq. (177) corresponds to
the evolution of the spin density operator under the chemical shift
Hamiltonian that is scaled by the factor of 1∕

√

3 around an axis that
is parallel to the effective field, i. e. an axis that encloses an angle
𝜃 = ar ct an

√

2 with the positive 𝑧-axis. This evolution is depicted in
Fig. 15 for the evolution of a starting density operator 𝜌0 = 𝐼𝑦 depicted
in red under the first order average Hamiltonian depicted in green by
an angle 𝛷 into the resulting density operator 𝜌1 shown in yellow. The
evolution corresponds to a rotation in the plane that is orthogonal to
the direction of the effective field.

Fig. 12(B) and (E) show the result of numerically simulating the
spectra of the two-1H spin system in KHM shown in Fig. 11 in the
presence of LG irradiation, including (B) solely the isotropic chemical
shift and (E) including both the isotropic and anisotropic chemical
shifts. Note, the frequency axis 𝛺 of the spectra has been scaled by
2

18 
the factor of
√

3, compensating for the scaling of the chemical shift
Hamiltonian by the factor of 1∕

√

3 in Eqs. (175) and (177). As a result
the spectra in panels (B) and (E) of Fig. 12 resemble the spectra in
panels (A) and (D), respectively, which were simulated without LG
irritation.

Interestingly, when the homonuclear dipolar 1H⋯1H coupling is
included in the simulations, the results shown in Fig. 12(H) and (K)
cannot be predicted by first order average Hamiltonian theory alone,
as the resulting spectral lineshapes do not resemble the results in panels
(B) and (E), as would be expected for perfect homonuclear decoupling
performance, but are typical second-order lineshapes, indicating con-
tributions from the commutator of the homonuclear dipolar coupling
and the isotropic chemical shift in (H) and contributions from the
commutator of the homonuclear dipolar coupling and the full chemical
shift tensor in (K). In the following section we will briefly discuss those
contributions in second order average Hamiltonian theory.

3.2.5. Second order average Hamiltonian
In this section we will discuss briefly the second order average

Hamiltonian under LG irradiating, which can be calculated using the
interaction frame Hamiltonian 𝐻̃𝐵(𝑡) given in Eq. (168) according to
Eq. (I-31):

𝐻̄ (2)
𝐵 = 1

2i𝑇 ∫

𝑡1

𝑡0
d𝑡∫

𝑡

𝑡0
d𝑡′ [𝐻̃𝐵(𝑡), 𝐻̃𝐵(𝑡′)]

= 1
2i𝑇 ∫

𝑡1

𝑡0
d𝑡∫

𝑡

𝑡0
d𝑡′

{

[𝐻̃CS
𝐵 (𝑡), 𝐻̃DD

𝐵 (𝑡′)] + [𝐻̃DD
𝐵 (𝑡), 𝐻̃CS

𝐵 (𝑡′)]

+ [𝐻̃CS
𝐵 (𝑡), 𝐻̃CS

𝐵 (𝑡′)] + [𝐻̃DD
𝐵 (𝑡), 𝐻̃DD

𝐵 (𝑡′)]
}

,

(178)

where in the second line we had to consider the commutators between
pairs of interactions. In general these commutators do not vanish as
they contain pairwise commutators between the irreducible spherical
spin operators 𝑇 𝑗1𝜇 , 𝑇 𝑘1𝜇′ , and 𝑇 𝑗 𝑘2𝜇′′ with 𝜇 , 𝜇′ = −1, 0, 1 and 𝜇′′ =
−2,−1, 0, 1, 2, which follows from the interaction frame Hamiltonians
Eqs. (169) and (170). The second-order lineshapes visible in panels
(H) and (K) of Fig. 12 are mostly the results of commutators between
the chemical shift interaction and the homonuclear dipolar coupling.
A more detailed discussion of the second order average Hamiltonian
under LG homonuclear decoupling can be found in Appendix B.

3.3. Flip-Flop and Frequency-Switched Lee-Goldburg (FFLG and FSLG)
homonuclear decoupling

As we have seen in the previous section, the use of simple LG
homonuclear decoupling results in 1H resonances that are affected by
second order cross terms between the homonuclear dipolar coupling
and the chemical shift interactions. As was introduced in section I-3.1
there is a basic design principle for the rf pulse sequence to eliminate
terms in second order average Hamiltonian theory: If we can design
the rf pulse sequence such that the interaction frame Hamiltonian is
symmetric over the time interval during which the sequence is applied,
all even order average Hamiltonian terms vanish, see Eq. (I-38). This
principle was first exploited by Mansfield when designing the MREV-8
homonuclear decoupling sequence [82–84].

Furthermore, Mehring and Waugh achieved the same for the LG ex-
periment by concatenating a block of LG irradiation with a second block
during which the direction of the effective field is inverted, referring to
it as the Flip-Flop Lee-Goldburg (FFLG) experiment [6]. The principle
is shown in Fig. 13(B): One basic LG building block of duration 𝜏𝑐
with nutation frequency 𝜔nut, frequency offset 𝛥 and rf phase 𝜙 = 0
is followed by a second block with the same nutation frequency, but
frequency offset −𝛥 and rf phase 𝜙 = 𝜋. Therefore the direction of
the effective field is inverted during the second LG block as shown in
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Fig. 14(B). As explained above, in the original FFLG implementation the
switching of the frequency offset was achieved by a pulsed magnetic
field along the 𝑧-axis (referred to a video field) [6,7], whereas in
he Frequency-Switched Lee-Goldburg (FSLG) implementation Levitt
nd co-workers switched the offset of the rf field phase-continuously
xploiting direct digital synthesis of the rf signal [8,9]. The relevant

spectral and rf frequencies during an FSLG experiment are depicted
in Fig. 14, where the Pake doublet of a homonuclear dipolar coupled
pin-1∕2 pair is shown at the isotropic chemical shift frequency 𝜔iso.

In addition, the positions of the rf reference frequency 𝜔ref, and the
positions of the resonance offsets 𝜔ref ± 𝛥 are indicated.

Fig. 13 shows the labelling of the time points 𝑡0 to 𝑡2 during the basic
uilding block of total duration 𝑇 of the FSLG sequence, which consists
f two concatenated blocks of LG irradiation of duration 𝜏𝑐 , resulting in
= 2𝜏𝑐 . The offset 𝛥 is inverted and the rf phase is switched to 𝜙 = 𝜋

uring the second block of LG irradiation. The nutation frequency 𝜔nut
nd rf offset 𝛥 are chosen such that as described above the LG condition
s fulfilled. i. e. 𝜃 = ar ct an

√

2 with 𝜃 defined in Eq. (160). Furthermore,
eff 𝜏𝑐 = 2𝜋 with 𝜔eff defined in Eq. (159).

3.3.1. Hamiltonian
The Hamiltonian during the FSLG pulse sequence looks similar to

he one given in Eq. (161) except that the rf phase 𝜙(𝑡) and the rf offset
𝛥(𝑡) become time-dependent
𝐻(𝑡) = 𝐻rf(𝑡) +𝐻int

= 𝛥(𝑡) 𝐼𝑧 + 𝜔nut 𝑅𝑧
(

𝜙(𝑡)
)

𝐼𝑥 𝑅𝑧
(

−𝜙(𝑡)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻𝐴(𝑡)

+𝜔CS
𝑗 𝑇 𝑗10 + 𝜔

CS
𝑘 𝑇 𝑘10

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻CS
𝐵

,

+ 𝜔DD
𝑗 𝑘 𝑇 𝑗 𝑘20

⏟⏞⏟⏞⏟
𝐻DD
𝐵

, (179)

where 𝐻𝐴(𝑡) periodic in time with the period 𝑇 = 2𝜏𝑐 :
𝐻𝐴(𝑡 + 2𝜏𝑐 ) = 𝐻𝐴(𝑡). (180)

The piecewise time-independent Hamiltonian 𝐻𝐴(𝑡) is given by:

𝐻𝐴(𝑡) =
{

𝛥 𝐼𝑧 + 𝜔nut𝐼𝑥 for 𝑡0 ≤ 𝑡 < 𝑡1
−𝛥 𝐼𝑧 − 𝜔nut𝐼𝑥 for 𝑡1 ≤ 𝑡 ≤ 𝑡2

=

{

𝜔eff 𝑅𝑦(𝜃) 𝐼𝑧 𝑅𝑦(−𝜃) for 𝑡0 ≤ 𝑡 < 𝑡1
−𝜔eff 𝑅𝑦(𝜃) 𝐼𝑧 𝑅𝑦(−𝜃) for 𝑡1 ≤ 𝑡 ≤ 𝑡2,

(181)

where we note that 𝐻𝐴(𝑡) during the time interval [𝑡1, 𝑡2] is identical to
𝐻𝐴(𝑡) during [𝑡0, 𝑡1[ except that 𝜔ref is replaced by −𝜔ref, i. e. the sign
of the effective field has been inverted.

3.3.2. Rf propagator and interaction frame Hamiltonian
Given 𝐻𝐴(𝑡) in Eq. (181) it is now straightforward to determine the

f propagator based on the previous result shown in Eq. (164):

𝑈𝐴(𝑡, 𝑡0) =
{

𝑅𝑦(𝜃)𝑅𝑧
(

𝜔eff(𝑡 − 𝑡0)
)

𝑅𝑦(−𝜃) for 𝑡0 ≤ 𝑡 < 𝑡1
𝑅𝑦(𝜃)𝑅𝑧

(

−𝜔eff(𝑡 − 𝑡1)
)

𝑅𝑦(−𝜃) for 𝑡1 ≤ 𝑡 ≤ 𝑡2
(182)

At this stage it is worthwhile to pause and consider the time symmetry
f the propagator 𝑈𝐴(𝑡, 𝑡0). Consider a small duration 𝜏 such that 0 <
𝜏 < 𝜏𝑐 , then the propagator 𝑈𝐴(𝑡, 𝑡0) at time point 𝑡 = 𝑡0 + 𝜏 following
from Eq. (182) is given by:

𝑈𝐴(𝑡0 + 𝜏 , 𝑡0) = 𝑅𝑦(𝜃)𝑅𝑧
(

𝜔eff 𝜏
)

𝑅𝑦(−𝜃) (183)

Furthermore, the propagator 𝑈𝐴(𝑡, 𝑡0) at time point 𝑡 = 𝑡2 − 𝜏 following
from Eq. (182) can be determined:
𝑈𝐴(𝑡2 − 𝜏 , 𝑡0) = 𝑅𝑦(𝜃)𝑅𝑧

(

−𝜔eff(𝑡2 − 𝜏 − 𝑡1)
)

𝑅𝑦(−𝜃)

= 𝑅𝑦(𝜃)𝑅𝑧(−𝜔eff 𝜏𝑐 )𝑅𝑧
(

𝜔eff 𝜏
)

𝑅𝑦(−𝜃)

= 𝑅𝑦(𝜃)𝑅𝑧
(

𝜔eff 𝜏
)

𝑅𝑦(−𝜃)
= 𝑈𝐴(𝑡0 + 𝜏 , 𝑡0), (184) a

19 
which implies that the propagator 𝑈𝐴(𝑡, 𝑡0) is symmetric over the time
nterval [𝑡0, 𝑡2], which will impose the same time symmetry on the
nteraction frame Hamiltonians:

𝐻̃𝐵(𝑡0 + 𝜏) = 𝐻̃𝐵(𝑡2 − 𝜏) (185)

𝐻̃DD
𝐵 (𝑡0 + 𝜏) = 𝐻̃𝐵(𝑡2 − 𝜏) (186)

𝐻̃CS
𝐵 (𝑡0 + 𝜏) = 𝐻̃𝐵(𝑡2 − 𝜏), (187)

where the expressions for the interaction frame Hamiltonians the time
point 𝑡 = 𝑡0 + 𝜏 can be found in Eqs. (168), (169) and (170).

3.3.3. First and higher order average Hamiltonians
Using the symmetry property in Eqs. (185)–(187) it is straightfor-

ward to show that average Hamiltonian over the complete FSLG basic
building block of duration 𝑇 = 2𝜏𝑐 is identical to the one for a single
LG element of duration 𝜏𝑐 :

𝐻̄ (1)
𝐵 = 1

𝑇 ∫

𝑡2

𝑡0
d𝑡 𝐻̃𝐵(𝑡)

= 1
2𝜏𝑐

(

∫

𝑡1

𝑡0
d𝑡 𝐻̃𝐵(𝑡) + ∫

𝑡2

𝑡1
d𝑡 𝐻̃𝐵(𝑡)

)

= 1
2𝜏𝑐

(

∫

𝜏𝑐

0
d𝜏 𝐻̃𝐵(𝑡0 + 𝜏) + ∫

𝜏𝑐

0
d𝜏 𝐻̃𝐵(𝑡2 − 𝜏)

)

= 1
𝜏𝑐 ∫

𝜏𝑐

0
d𝜏 𝐻̃𝐵(𝑡0 + 𝜏) (188)

Therefore, the first order average Hamiltonian of the homonuclear
dipolar coupling 𝐻̄DD(1)

𝐵 and the chemical shift interaction 𝐻̄CS(1)
𝐵 are

dentical to Eqs. (174) and (175), respectively, leading to total first av-
erage Hamiltonian under the FSLG homonuclear decoupling sequence:

𝐻̄ (1)
𝐵 = 𝐻̄CS(1)

𝐵

= 𝑅𝑦(𝜃)
(

∑

𝑙=𝑗 ,𝑘
1
√

3
𝜔CS
𝑙 𝑇 𝑙10

)

𝑅𝑦(−𝜃), (189)

which is identical to the previous result for the LG sequence in
Eq. (175). More importantly, as the interaction frame Hamiltonian is
symmetric over the time interval [𝑡0, 𝑡2], see Eq. (185), all even order
verage Hamiltonian terms vanish, as discussed in section I-3.1:

𝐻̄ (𝑛)
𝐵 = 0 for all even 𝑛 = 2, 4, 6,… (190)

This is a significant improvement compared to the original, basic LG
homonuclear decoupling sequence as can be seen in the results of
numerical simulations of the two-1H spin system in KHM under FSLG
irradiation shown in Fig. 12(C), (F), (I) and (L). The results shown
in panels (C) and (F) were simulated solely including the isotropic
chemical shift, and including the full chemical shift tensor, respectively.
As expected from first order average Hamiltonian theory these spectra
appear identical to the spectra simulated for the basic LG sequence
shown in panels (B) and (E),

More importantly, when the homonuclear dipolar 1H⋯1H coupling
is included in the simulations, the results shown in Fig. 12(I) and (L)
or the FSLG sequence are identical to the ones shown in panels (C) and

(F), for which the homonuclear dipolar coupling was not included in
he simulations. This demonstrates impressively the removal especially
f the terms in the second order average Hamiltonian according to
q. (190) that were the cause of the second order lineshapes in the

results shown for the basic LG sequences in panels (H) and (K).
Furthermore, the results shown on panel (L) of Fig. 12 illustrate

hy homonuclear decoupling sequences have been combined with MAS
CRAMPS), as the CSA powder pattern lineshape limits the resolution
n the 1H spectrum. CRAMPS on the other hand combines the homonu-
lear decoupling of the rf pulse sequence with the averaging of the MAS
nd results in isotopic 1H lines, where the final resolution is limited
y the homogeneity of the rf field and higher order cross term in the
verage Hamiltonian [108,109].
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In addition to the above mentioned excellent comparison study
and detailed experimental protocol of various homonuclear decoupling
sequences [96], readers are encouraged to consult for further read-
ing the 2016 review of Mote et al. on five decades of homonuclear
decoupling in solid-state NMR [110]. Recently, Tognetti et al. have
performed CRAMPS experiment at 60 kHz spinning frequency employ-
ng the PMLG sequence [111]. Quantifying different polymorphs and

solvatomorphs of active pharmaceutical ingredients (APIs) in phar-
maceutical formulations is frequently done by 13C solid-state NMR,
however Wong et al. introduced the CRAMPS-MAR technique [112],
employing CRAMPS together with mixture analysis using references
(MAR) [113], in which the spectrum of a mixture is fitted as a lin-
ar combination of the pure component spectra. Finally, Nishiyama
t al. [114] and Schröder et al. [115] have reviewed the recent progress

in ultrafast magic-angle spinning (up to 200 kHz), allowing directly
detected high-resolution 1H spectra without employing homonuclear
ecoupling pulse sequences.

4. Concluding remarks

In this second part of our Introduction to average Hamiltonian the-
ry we applied average Hamiltonian theory to two seminal rf pulse
equences in solid-state NMR: (i) The REDOR heteronuclear dipolar
ecoupling sequence under MAS conditions, where we could show that
n the case of rf pulses with finite duration, starting with arbitrary rf
hases and the requirement of a first order average Hamiltonian solely
roportional to heteronuclear longitudinal two-spin order (2𝐼𝑧𝑆𝑧) will
ead to solutions including the XY and MLEV type phase schemes.
ii) The LG homonuclear dipolar decoupling sequence under static
onditions and its improved successors, the FFLG and FSLG sequences,
here we showed how making the basic pulse sequence building blocks

n the FFLG and FSLG sequence time-symmetric leads to improved
erformance as all even order average Hamiltonian terms vanish.

Finally, Part III of this Introduction to average Hamiltonian theory will
cover rotor-synchronized, symmetry-based decoupling and recoupling
f pulse sequences denoted C𝑁𝜈

𝑛 and R𝑁𝜈
𝑛 in MAS NMR. These se-

quences are described by three symmetry numbers, 𝑁 , 𝑛, and 𝜈, which
can be chosen according to simple theorems linking the basic rf pulse
uilding block, the timings and rf phases such that only certain terms
re symmetry-allow in the average Hamiltonian [14,16,57,116–119].

This will simplify the rational design of recoupling and decoupling
sequences with certain properties compared to having to start with
arbitrary rf phases as was done for the REDOR sequence in Section 2.4.
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Appendix A. Analytical expressions for rotary resonance recou-
ling

In this Appendix we derive the analytical form of the 𝑆-spin signal
intensity in a powdered sample as a function of the duration 𝜏 of a
constant rf field at the R3 𝑛 = 1 resonance condition, i. e. REDOR with
20 
pulse fraction 𝑓 = 1, 𝑆(𝜏 , 1), shown in Eq. (85). For this, the powder
averaging Eq. (83) has to be performed analytically using Eq. (36):

𝑆(𝜏 , 1) = 1
4𝜋 ∫

2𝜋

0
d𝛾𝐼 𝑆𝑃 𝑅 ∫

𝜋

0
d𝛽𝐼 𝑆𝑃 𝑅 sin 𝛽𝐼 𝑆𝑃 𝑅 cos

( 1

2
√

2
𝑏𝐼 𝑆 sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

𝜏
)

= 1
2 ∫

𝜋

0
d𝛽𝐼 𝑆𝑃 𝑅 sin 𝛽𝐼 𝑆𝑃 𝑅 cos

( 1

2
√

2
𝑏𝐼 𝑆 sin

(

2𝛽𝐼 𝑆𝑃 𝑅
)

𝜏
)

, (A.1)

where the integral in the last line can be solved with the help of Eq. 6.
in section 3.715 of Ref. [51]:

∫

𝜋

0
d𝑥 sin(𝑎𝑥) cos(𝑧 sin 𝑥) = −𝑎(1 − cos 𝑎𝜋) 𝑠−1,𝑎(𝑧), (A.2)

where 𝑠𝜈 ,𝜇(𝑧) denotes the Lommel function with in general integer or
ractional parameter 𝜈 and 𝜇 and in general complex argument 𝑧 [51].

Using suitable substitutions this leads to the final result shown in
Eq. (85):

𝑆(𝜏 , 1) = −1
4
𝑠−1,1∕2

(

1

2
√

2
𝑏𝐼 𝑆 𝜏

)

. (A.3)

Although the Lommel function 𝑠𝜈 ,𝜇(𝑧) has currently been implemented
or example in the Python library mpath [120] and is expected to be in-
egrated into Mathematica in the future, it can be straightforwardly im-
lemented exploiting its connection to the generalized hypergeometric
unction:

𝑠𝜇 ,𝜈 (𝑧) = 𝑧𝜇+1

(𝜇 − 𝜈 + 1)(𝜇 + 𝜈 + 1) 1𝐹2

(

1;
𝜇 − 𝜈 + 3

2
,
𝜇 + 𝜈 + 3

2
; − 𝑧

2

4

)

, (A.4)

where 𝑝𝐹𝑞(𝐚;𝐛; 𝑧) is the generalized hypergeometric function [51] of the
omplex variable 𝑧 with tuples 𝐚 and 𝐛 of length 𝑝 and 𝑞, respectively.
herefore, Eq. (85) maybe written as:

𝑆(𝜏 , 1) = 1𝐹2
(

1; 3
4
, 5
4
; − 1

32
𝑏2𝐼 𝑆𝜏2

)

. (A.5)

Furthermore, the Lommel function 𝑠−1,𝜈 (𝑧) can be expressed using both
the Anger and Weber functions 𝐉𝜈 (𝑧) and 𝐄𝜈 (𝑧) [51]:

𝑠−1,𝜈 (𝑧) = − 𝜋
2𝜈 sin 𝜈 𝜋

{

𝐉𝜈 (𝑧) + 𝐉−𝜈 (𝑧)
}

(A.6)

−1,𝜈 (𝑧) =− 𝜋
2𝜈(1 − cos 𝜈 𝜋)

{

𝐄𝜈 (𝑧) − 𝐄−𝜈 (𝑧)
}

, (A.7)

leading to the following expressions for Eq. (85):

𝑆(𝜏 , 1) = 𝜋
4

{

𝐉1∕2

(

1

2
√

2
𝑏𝐼 𝑆 𝜏

)

+ 𝐉−1∕2

(

1

2
√

2
𝑏𝐼 𝑆 𝜏

)}

(A.8)

(𝜏 , 1) = 𝜋
4

{

𝐄1∕2

(

1

2
√

2
𝑏𝐼 𝑆 𝜏

)

− 𝐄−1∕2

(

1

2
√

2
𝑏𝐼 𝑆 𝜏

)}

(A.9)

Finally, the special case of the Lommel function 𝑠−1,1∕2(𝑧) can be ex-
ressed with the help of the Fresnel cosine and sine integrals [121,

122]:

𝑠−1,1∕2(𝑧) = −2
√

2𝜋
𝑧

{

sin 𝑧 
(

√

2𝑧
𝜋

)

+ cos 𝑧 (
√

2𝑧
𝜋
)

}

, (A.10)

where (𝑧) and (𝑧) are the normalized Fresnel cosine and sine inte-
rals [50]:

(𝑧) = ∫

𝑧

0
d𝑡 sin

(𝜋
2
𝑡2
)

(A.11)

(𝑧) = ∫

𝑧

0
d𝑡 cos

(𝜋
2
𝑡2
)

. (A.12)

It follows, the signal intensity Eq. (85) maybe written as:

𝑆(𝜏 , 1) = 1
2

√

2𝜋
𝑧

{

sin 𝑧 
(

√

2𝑧
𝜋

)

+ cos 𝑧 (
√

2𝑧
𝜋
)

}

(A.13)

with

𝑧 = 1

2
√

2
𝑏𝐼 𝑆 𝜏 . (A.14)
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Pileio et al. have used the Fresnel cosine and sine integrals to express
he double-quantum filtered efficiency as a function of the duration
f the application of a 𝛾-encoded homonuclear dipolar recoupling se-
uence [59], resulting in an expression similar to Eq. (A.13). However,

arguably, the use of the Lommel function leads to a significantly more
elegant expression Eq. (85).

Appendix B. Second order average Hamiltonian under
ee-Goldburg homonuclear decoupling

In this Appendix we derive the second order average Hamiltonian
for the LG homonuclear decoupling sequence applied to a two-spin sys-
tem consisting of spins 𝐼𝑗 and 𝐼𝑘. In a first step the internal Hamiltonian
in general can be written as
𝐻int =

∑

𝛬,𝜆
𝐻𝛬
𝜆0

=
∑

𝛬𝜆
𝜔𝛬 𝑇𝛬𝜆0, (B.1)

where the sum is taken over the spin interactions 𝛬 and the correspond-
ing ranks 𝜆 of the irreducible spherical spin tensors. In Eq. (161) we
ave considered the chemical shift interaction and the homonuclear
ipolar coupling, i.e. 𝛬 = CS,DD, and the corresponding ranks of the

spin tensors are 𝜆 = 1, 2, respectively.
Similarly, the interaction frame Hamiltonian can be written as

̃𝐵(𝑡) = 𝑅𝑦(𝜃)
(

∑

𝛬,𝜆,𝜇
𝐻̃𝛬
𝜆𝜇(𝑡)

)

𝑅𝑦(−𝜃)

= 𝑅𝑦(𝜃)
(

∑

𝛬,𝜆,𝜇
𝜔̃𝛬𝜆𝜇(𝑡) 𝑇

𝛬
𝜆𝜇

)

𝑅𝑦(−𝜃), (B.2)

where we have defined the interaction frame frequencies

𝜔̃𝛬𝜆𝜇(𝑡) = 𝜔𝛬 𝑑(𝜆)𝜇0
(

−𝜃
)

exp
(

i𝜇 𝜔eff(𝑡 − 𝑡0)
)

, (B.3)

and sum over 𝜇 takes all possible values 𝜇 = −𝜆,−𝜆 + 1,… , 𝜆 for each
ank 𝜆. As a result, Eq. (B.2) together with (B.3) generalize Eqs. (169)
nd (170), which were given separately for the homonuclear dipolar
oupling and the chemical shift interaction, respectively.

The first order average Hamiltonian can be written as

̄ (1)
𝐵 = 𝑅𝑦(𝜃)

(

∑

𝛬,𝜆,𝜇
𝐻̄𝛬
𝜆𝜇

)

𝑅𝑦(−𝜃)

= 𝑅𝑦(𝜃)
(

∑

𝛬,𝜆,𝜇
𝜔̄𝛬𝜆𝜇 𝑇

𝛬
𝜆𝜇

)

𝑅𝑦(−𝜃) (B.4)

where the time-independent amplitude 𝜔̄𝛬𝜆𝜇 is defined as

𝜔̄𝛬𝜆𝜇 = 𝜔𝛬 𝜅𝜆𝜇 , (B.5)

and 𝜅𝜆𝜇 is the scaling factor of the first order average Hamiltonian term
with the spin rank 𝜆 and spin component 𝜇, which is a product of two
components:

𝜅𝜆𝜇 = 𝑑(𝜆)𝜇0
(

−𝜃
)

𝜇 , (B.6)

where 𝐼𝜇 is the integral solved in Eq. (173):

𝜇 = 1
𝑇 ∫

𝑇

0
d𝑡′ exp

(

i𝜇 𝜔eff 𝑡
′)

= 𝛿𝜇0, (B.7)

where 𝛿𝜇 𝜇′ is the Kronecker 𝛿-symbol [28]. As discussed in
Section 3.2.4, 𝜅 = 0 and 𝜅 = 1∕

√

3 at the magic angle 𝜃 = ar ct an
√

2.
20 10

21 
Table B.1
The values of the scaling factor 𝜅 𝜆2𝜇2

𝜆1𝜇1
in Eq. (B.10) for the cross terms 𝛬2 × 𝛬1 in the

second order average Hamiltonian Eq. (B.8).
𝜇2 CS𝑗 × CS𝑗 DD𝑗 𝑘 × CS𝑗 DD𝑗 𝑘 × DD𝑗 𝑘

𝜇1 𝜇1 𝜇1
−1 0 1 −1 0 1 −2 −1 0 1 2

−2 0 1∕(6
√

2) 0 0 0 0 0 −1∕12
−1 0 1∕3 1∕3 0 1∕3 1∕3 0 0 0 1∕3 0
0 −1∕3 0a −1∕3 0 0 0 0 0 0 0 0
1 −1∕3 1∕3 0 −1∕3 1∕3 0 0 −1∕3 0 0 0
2 0 −1∕(6

√

2) 0 1∕12 0 0 0 0

a Set to 0 as [𝑇 𝑗10 , 𝑇 𝑗10] = 0.

The second order average Hamiltonian in Eq. (178) can be written
as

𝐻̄ (2)
𝐵 = 𝑅𝑦(𝜃)

(

∑

𝛬2 ,𝜆2 ,𝜇2
𝛬1 ,𝜆1 ,𝜇1

𝐻̄𝛬2×𝛬1
𝜆2𝜇2
𝜆1𝜇1

)

𝑅𝑦(−𝜃)

= 𝑅𝑦(𝜃)
(

∑

𝛬2 ,𝜆2 ,𝜇2
𝛬1 ,𝜆1 ,𝜇1

𝜔̄𝛬2×𝛬1
𝜆2𝜇2
𝜆1𝜇1

[𝑇𝛬2
𝜆2𝜇2

, 𝑇𝛬1
𝜆1𝜇1

]
)

𝑅𝑦(−𝜃) (B.8)

where the sum is taken over all second order cross terms between
a term of interaction 𝛬2 with quantum numbers (𝜆2, 𝜇2), and that of
interaction 𝛬1 with quantum numbers (𝜆1, 𝜇1). The time-independent
mplitudes 𝜔̄𝛬𝜆𝜇 are defined as

𝜔̄𝛬2×𝛬1
𝜆2𝜇2
𝜆1𝜇1

= 𝜔𝛬2 𝜔𝛬1

2𝜔eff
𝜅 𝜆2𝜇2
𝜆1𝜇1

(B.9)

and 𝜅 𝜆2𝜇2
𝜆1𝜇1

is the scaling factor of the second order cross term be-

tween interactions with the quantum numbers (𝜆2, 𝜇2) and (𝜆1, 𝜇1),
respectively:

𝜅 𝜆2𝜇2
𝜆1𝜇1

= 𝑑(𝜆2)𝜇20
(

−𝜃
)

𝑑(𝜆1)𝜇10
(

−𝜃
)

𝜇2𝜇1 , (B.10)

where 𝜇2𝜇1 is the following integral:

𝜇2𝜇1 =
2𝜔eff
2i𝑇

𝑇

∫
0

d𝑡′
𝑡′

∫
0

d𝑡′′ exp
{

i𝜔eff (𝜇2 𝑡′ + 𝜇1 𝑡′′)
}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−i𝜋 for 𝜇2 = 𝜇1 = 0

1∕𝜇 for

(

𝜇2 = 0 and 𝜇 = 𝜇1 ≠ 0
)

or
(

𝜇 = 𝜇2 ≠ 0 and 𝜇1 = 0)
or

(

𝜇 = 𝜇2 = −𝜇1 and 𝜇 ≠ 0
)

(B.11)

Table B.1 lists the values of the scaling factor 𝜅 𝜆2𝜇2
𝜆1𝜇1

in Eq. (B.10) for
ifferent cross terms 𝛬2 × 𝛬1 of the spin interactions 𝛬2 and 𝛬1 in the
econd order average Hamiltonian for 𝜃 = ar ct an

√

2.
The elements in Table B.1 that do not vanish correspond to the cross

term that contribute to the second order average Hamiltonian in Eqs.
(178) and (B.8). Notably, most cross terms between the homonuclear
dipolar coupling and itself vanish, except for 𝜇2 = −𝜇1 ≠ 0. Overall,
more non-vanishing cross terms between the chemical shift interaction
and the dipolar interaction can be found. The same holds true for cross
term of the chemical shift interaction with itself. This explains why the
second-order lineshapes visible in panels (H) and (K) of Fig. 12, result-
ing from numerical simulations of the LG sequence in KHM, are mostly
the results of commutators between the chemical shift interaction and
the homonuclear dipolar coupling.

From Eq. (B.9) it follows that the amplitudes 𝜔̄𝛬2×𝛬1
𝜆2𝜇2
𝜆1𝜇1

of the second

order terms are not only proportional to the scaling factor 𝜅 𝜆2𝜇2 listed

𝜆1𝜇1
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in Table B.1, but also proportional to the product of the interaction fre-
quencies 𝜔𝛬2 𝜔𝛬1 , and inversely proportional to the effective nutation
frequency 𝜔eff during the homonuclear decoupling sequence. The latter
implies that increasing the amplitude of the rf field (together with the
rf resonance offset) will decrease the size of the terms in the second
order average Hamiltonian.

Appendix C. The nuclear spin Hamiltonian

As discussed in detail in section I-2.1 the evolution of the state
vector of a nuclear spin system is governed by the time-dependent
Schrödinger equation (I-1). The time-dependent nuclear spin Hamilto-
nian may be written as a sum over different spin interactions
𝛬

𝐻(𝑡) =
∑

𝛬
𝐻𝛬(𝑡). (C.1)

The contributions 𝛬 to the nuclear spin Hamiltonian relevant for NMR
experiments are in detail presented in Refs. [107,123–126]. In the
following, only interactions 𝛬 in systems of coupled spins-1∕2 are con-
sidered.

C.1. Cartesian representation

The Hamiltonian for the spin interaction 𝛬 may be expressed with
the help of a second rank cartesian tensor A𝛬 in the following way:
𝐻𝛬(𝑡) = 𝐶𝛬 (𝐗𝛬)𝑇 ⋅ A𝛬 ⋅ 𝐘𝛬

= 𝐶𝛬
(

𝑋𝛬
𝑥 𝑋𝛬

𝑦 𝑋𝛬
𝑧

)

⋅

⎛

⎜

⎜

⎜

⎝

𝐴𝛬𝑥𝑥 𝐴𝛬𝑥𝑦 𝐴𝛬𝑥𝑧
𝐴𝛬𝑦𝑥 𝐴𝛬𝑦𝑦 𝐴𝛬𝑦𝑧
𝐴𝛬𝑧𝑥 𝐴𝛬𝑧𝑦 𝐴𝛬𝑧𝑧

⎞

⎟

⎟

⎟

⎠

⋅
⎛

⎜

⎜

⎝

𝑌 𝛬𝑥
𝑌 𝛬𝑦
𝑌 𝛬𝑧

⎞

⎟

⎟

⎠

, (C.2)

where 𝐗 and 𝐘 are vector operators of the interacting physical quanti-
ties. These can be two nuclear spins, e.g. denoted 𝐈 and 𝐒, or one nuclear
spin and an external magnetic field 𝐁. The constant 𝐶𝛬 is characteristic
for the interaction 𝛬.

C.2. Spherical representation

The components of the second rank cartesian tensor A𝛬 can be
decomposed into a scalar, A 𝛬

0 , an antisymmetric first rank tensor, A 𝛬
1

and a traceless, symmetric second rank tensor, A 𝛬
2 . The three resulting

tensors A 𝛬
𝑙 are the called irreducible spherical tensors of ranks 𝑙 = 0, 1, 2

with corresponding cartesian tensors A𝛬𝑙 , which relate as

A𝛬 = A𝛬0 + A𝛬1 + A𝛬2 . (C.3)

The exact form of a tensor depends upon the coordinate system or
reference frame it is expressed in. Consider two reference frames 𝐹
and 𝐹 ′, which are related to each other by rotations. The rotations
from frame, 𝐹 to 𝐹 ′ can be described by three Euler angles 𝛺𝐹 𝐹 ′ =
{𝛼𝐹 𝐹 ′ , 𝛽𝐹 𝐹 ′ , 𝛾𝐹 𝐹 ′}. An irreducible spherical tensor A 𝛬

𝑙 of rank 𝑙 is com-
posed of (2𝑙+ 1) components A 𝛬

𝑙 𝑞 , where 𝑞 = −𝑙 ,−𝑙+ 1,… , 𝑙. Irreducible
spherical tensors are defined as transforming in the following way under
rotations of the coordinate system:
[

A 𝛬
𝑙 𝑞
]𝐹 ′

=
𝑙

∑

𝑞′=−𝑙

[

A 𝛬
𝑙 𝑞′
]𝐹
𝐷(𝑙)
𝑞′𝑞(𝛺𝐹 𝐹 ′ ), (C.4)

where 𝐷(𝑙)
𝑞′𝑞 is a Wigner D-matrix element [25,28].

The Hamiltonian for the spin interaction 𝛬 may be expressed by a
sum over scalar products of two irreducible spherical tensors, in the
following way [107]:

𝐻𝛬 = 𝐶𝛬
2
∑

𝑙=0

𝑙
∑

𝑞=−𝑙
(−1)𝑞

[

A 𝛬
𝑙 𝑞
]𝐹 [

T 𝛬
𝑙−𝑞

]𝐹
. (C.5)

A 𝛬
𝑙 is called a spatial tensor. T 𝛬

𝑙 𝑞 is the component 𝑞 of the irreducible
spherical tensor of rank 𝑙, built from the two vector operators 𝐗 and
22 
Fig. C.1. The relevant reference frames and transformations in MAS NMR: The
principal axis system 𝑃𝛬 of the spin interaction 𝛬, the molecular frame 𝑀 , the rotor
frame 𝑅 and the laboratory frame 𝐿 are depicted together with the Euler angles 𝛺𝛬

𝑃 𝑀 ,
𝛺𝑀 𝑅 and 𝛺𝑅𝐿 relating the respective reference frames.

𝐘 in Eq. (C.2) [107]. If 𝐗 and 𝐘 are both spin operators, T 𝛬
𝑙 is called

a spin tensor. If one of 𝐗 or 𝐘 is a spin operator and the other is an
external magnetic field, T 𝛬

𝑙 is called a spin-field tensor.
The exact form of the tensor elements depend upon the chosen

reference frame 𝐹 , whereas the scalar product of both tensors is inde-
pendent of the choice of 𝐹 . The complete list of components A 𝛬

𝑙 𝑞 and
T 𝛬
𝑙 𝑞 for 𝑙 = 0, 1 and 2 for the different spin interactions can be found in

Ref. [107], where Table C.3 shows the components for 𝑙 = 0 and 2 for
spin-1∕2 nuclei discussed in more detail in Sections Appendices C.5–C.9.

C.3. Reference frames in solid state NMR

An overview over the relevant reference frames in solid state NMR
is given in Fig. C.1. The principal axis system (PAS) of an interaction
𝛬, denoted 𝑃𝛬, is defined as the reference frame where the cartesian
tensor A𝛬2 belonging to the second rank spatial tensor A 𝛬

2 is diagonal.
The molecular frame, denoted 𝑀 , is a reference frame fixed on the
molecule and may be chosen arbitrarily. The rotor frame, denoted 𝑅,
is a reference frame in which the 𝑧𝑅-axis coincides with the rotor
axis. We note that here as shown in Fig. C.1 the molecular frame has
been introduced as an additional intermediate step compared to Fig. 1.
Finally, the laboratory frame, denoted 𝐿, is a reference frame in which
the 𝑧𝐿-axis points in the direction of the external magnetic field.

Since the tensors T 𝛬
𝑙 are usually expressed in the laboratory frame

𝐿 of the experiment, it is necessary to transform the spatial tensors from
the PAS to the laboratory frame:
[

A 𝛬
𝑙 𝑞
]𝐿

=
𝑙

∑

𝑞′=−𝑙

[

A 𝛬
𝑙 𝑞′
]𝑃
𝐷(𝑙)
𝑞′𝑞(𝛺

𝛬
𝑃 𝐿), (C.6)

where 𝛺𝛬
𝑃 𝐿 = {𝛼𝛬𝑃 𝐿, 𝛽𝛬𝑃 𝐿, 𝛾𝛬𝑃 𝐿} are the Euler angles relating the PAS of

the interaction 𝛬 to the laboratory frame. Eq. (C.5) becomes:

𝐻𝛬 = 𝐶𝛬
2
∑

𝑙=0

𝑙
∑

𝑞 ,𝑞′=−𝑙
(−1)𝑞

[

A 𝛬
𝑙 𝑞′
]𝑃
𝐷(𝑙)
𝑞′𝑞(𝛺

𝛬
𝑃 𝐿)

[

T 𝛬
𝑙−𝑞

]𝐿
. (C.7)

C.4. High field approximation

It proves to be useful to divide the nuclear spin Hamiltonian into the
part describing the interaction with the rf field and a part describing
the internal spin interactions and the interaction with the static field.
The total spin Hamiltonian at time point 𝑡 may be written as
𝐻(𝑡) = 𝐻rf(𝑡) +𝐻int(𝑡), (C.8)
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Table C.1
Single-spin and two-spin irreducible spherical tensor operators 𝑇 𝑗𝜆𝜇 and 𝑇 𝑗 𝑘𝜆𝜇 .

Spin rank Spin component Single spin Two spins
𝜆 𝜇 𝑗 𝑗 , 𝑘
0 0 𝑇 𝑗00

1
√

2
1𝑗 𝑇 𝑗 𝑘00 − 1

√

3
𝐈𝑗 ⋅ 𝐈𝑘

1 0 𝑇 𝑗10 𝐼𝑗 𝑧 𝑇 𝑗 𝑘10 1

2
√

2

(

𝐼+𝑗 𝐼
−
𝑘 − 𝐼−𝑗 𝐼

+
𝑘

)

1 ±1 𝑇 𝑗1±1 ∓ 1
√

2
𝐼±𝑗 𝑇 𝑗 𝑘1±1 1

2

(

𝐼±𝑗 𝐼𝑘𝑧 − 𝐼𝑗 𝑧𝐼±𝑘
)

2 0 𝑇 𝑗20
1
√

6

(

3𝐼2𝑗 𝑧 − 𝐼𝑗 (𝐼𝑗 + 1)
)

𝑇 𝑗 𝑘20 1
√

6

(

3𝐼𝑗 𝑧𝐼𝑘𝑧 − 𝐈𝑗 ⋅ 𝐈𝑘
)

2 ±1 𝑇 𝑗2±1 ∓ 1
2

(

𝐼±𝑗 𝐼𝑗 𝑧 + 𝐼𝑗 𝑧𝐼±𝑗
)

𝑇 𝑗 𝑘2±1 ∓ 1
2

(

𝐼±𝑗 𝐼𝑘𝑧 + 𝐼𝑗 𝑧𝐼±𝑘
)

2 ±2 𝑇 𝑗2±2
1
2

(

𝐼±𝑗
)2

𝑇 𝑗 𝑘2±2 1
2
𝐼±𝑗 𝐼

±
𝑘

Table C.2
The space and spin parts for a list of spin interactions.
Interaction 𝛬 Space part Spin part

𝐹 [𝐴𝛬00]
𝐹 [𝐴𝛬20]

𝐹 [𝐴𝛬2±1]
𝐹 [𝐴𝛬2±2]

𝐹

Zeeman Z 𝐿 𝜔0 – – – 𝑇 𝑗10
isotropic shift CS 𝐿 𝜔0𝛿

iso
𝑗 – – – 𝑇 𝑗10

Zeeman and isotropic shift in rotating frame Z,CS 𝐿 𝛺iso
𝑗 – – – 𝑇 𝑗10

CSA CS 𝑃 – 𝜔0(𝛿𝑃𝑧𝑧 − 𝛿
iso
𝑗 ) 0 −

𝜂
√

6
[𝐴20]𝑃 𝑇 𝑗10

Homonuclear dipolar coupling DD𝑗 𝑘 𝑃 –
√

6 𝑏𝑗 𝑘 0 0 𝑇 𝑗 𝑘20
Homonuclear isotropic 𝐽 -coupling J𝑗 𝑘 𝐿 −

√

3 2𝜋 𝐽 – – – 𝑇 𝑗 𝑘00
Heteronuclear dipolar coupling DD𝐼 𝑆 𝑃 – 2 𝑏𝐼 𝑆 0 0 𝑇 𝐼10 𝑇

𝑆
10

Heteronuclear isotropic 𝐽 -coupling J𝐼 𝑆 𝐿 2𝜋 𝐽 – – – 𝑇 𝐼10 𝑇
𝑆
10
f

c
s

r
𝑆

m
b

where the internal spin Hamiltonian 𝐻int(𝑡) is time dependent if the
molecules in the sample move or the whole sample is moved, while
he rf spin Hamiltonian 𝐻int(𝑡) is time dependent because of the mod-

ulations of the rf fields. In a spin system containing two spin species 𝐼
nd 𝑆, the internal Hamiltonian may be divided further:

𝐻int(𝑡) = 𝐻𝐼
int(𝑡) +𝐻𝑆

int(𝑡) +𝐻𝐼 𝑆
int (𝑡), (C.9)

where 𝐻𝐼
int(𝑡) and 𝐻𝑆

int(𝑡) describe all homonuclear spin interactions of
spins 𝐼 and 𝑆 respectively. The term 𝐻𝐼 𝑆

int (𝑡) describes the heteronuclear
interactions between spins of species 𝐼 and 𝑆.

In high-field NMR of spin-1∕2 nuclei, the internal spin Hamiltonian
in Eq. (C.9) may be simplified by neglecting terms which do not
ommute with 𝐼𝑧 and 𝑆𝑧. The remaining terms are referred to as
ecular terms, whereas the neglected terms are called non-secular terms.
he neglecting of non-secular terms is called the secular or high-field
pproximation [32,127,128].

Since it is possible to rotate the spin angular momenta by external
rf fields, the internal Hamiltonians will no longer be written in terms
of components T 𝛬

𝑙 𝑞 of the spin or spin-field tensors, but in terms of
components 𝑇𝛬𝜆𝜇 of pure irreducible spherical spin tensors 𝑇𝛬𝜆 , which
are defined in Table C.1. This is allowed because the external magnetic
field is constant and not subject to rotations. The ranks 𝑙 and 𝜆 are
not necessarily the same. In addition, spatial tensors 𝐴𝛬𝑙 are defined,

hich are related to the spatial tensors A 𝛬
𝑙 by numerical factors.

Table C.2 contains the relevant tensor components of 𝐴𝛬𝑙 for different
spin interactions in the high-field approximation and Table C.3 shows
the relationship of the spatial tensors 𝐴𝛬𝑙 and A 𝛬

𝑙 and the relationships
of the spin tensor components 𝑇𝛬𝜆0 and the components T 𝛬

𝑙0 of the spin
or spin-field tensors.

The internal Hamiltonians for homonuclear spin interactions for
pins 𝐼 and 𝑆 may, in the high field approximation, be written as

𝐻𝐼
int(𝑡) =

∑

𝐻𝛬𝐼
𝑙 𝜆𝐼 0(𝑡) (C.10)
𝛬𝐼 ,𝑙 ,𝜆𝐼

23 
𝐻𝑆
int(𝑡) =

∑

𝛬𝑆 ,𝑙 ,𝜆𝑆
𝐻𝛬𝑆
𝑙 𝜆𝑆0(𝑡), (C.11)

where

𝐻𝛬
𝑙 𝜆0(𝑡) =

𝑙
∑

𝑞=−𝑙

[

𝐴𝛬𝑙 𝑞
]𝑃
𝐷(𝑙)
𝑞0(𝛺

𝛬
𝑃 𝐿) 𝑇𝛬𝜆0. (C.12)

The term 𝐻𝛬
𝑙 𝜆0(𝑡) transforms as an irreducible spherical tensor of rank 𝑙

or spatial rotations and rank 𝜆 for spin rotations.
The internal Hamiltonians for heteronuclear spin interactions for

spins 𝐼 and 𝑆 may, in the high field approximation, be written as

𝐻𝐼 𝑆
int (𝑡) =

∑

𝛬𝐼 𝑆 ,𝑙 ,𝜆𝐼 ,𝜆𝑆
𝐻𝛬𝐼 𝑆
𝑙 𝜆𝐼 0 𝜆𝑆0(𝑡), (C.13)

where the terms 𝐻𝛬𝐼 𝑆
𝑙 𝜆𝐼 0 𝜆𝑆0(𝑡) may be written in terms of products of the

omponents of two irreducible spherical spin tensors, 𝑇𝛬𝐼𝜆𝐼 0 𝑇
𝛬𝑆
𝜆𝑆0

, for the
pin species 𝐼 and 𝑆 respectively:

𝐻𝛬𝐼 𝑆
𝑙 𝜆𝐼 0 𝜆𝑆0(𝑡) =

𝑙
∑

𝑞=−𝑙

[

𝐴𝛬𝐼 𝑆𝑙 𝑞
]𝑃𝐷(𝑙)

𝑞0(𝛺
𝛬𝐼 𝑆
𝑃 𝐿 ) 𝑇𝛬𝐼𝜆𝐼 0 𝑇

𝛬𝑆
𝜆𝑆0

. (C.14)

The term 𝐻𝛬𝐼 𝑆
𝑙 𝜆𝐼 0 𝜆𝑆0(𝑡) transforms as an irreducible spherical tensor of

ank 𝑙 for spatial rotations, rank 𝜆𝐼 for 𝐼-spin rotations and rank 𝜆𝑆 for
-spin rotations.

C.5. Zeeman interaction

The Hamiltonian of the Zeeman interaction of the 𝐼-spin nuclear
agnetic moments with an external magnetic field 𝐁0 = 𝐵0 𝐞𝑧𝐿 is given

y

𝐻Z
𝐼 = −𝝁 ⋅ 𝐁0 (C.15)

= −𝛾𝐼 𝐈𝑇 ⋅ 1 ⋅ 𝐁0 (C.16)

= −𝛾𝐼𝐵0𝐼𝑧 (C.17)

= 𝜔 𝐼 (C.18)
0 𝑧
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Table C.3
Relationships between the spatial tensor components 𝐴𝛬𝑙 𝑞 and A 𝛬

𝑙 𝑞 , and the spin tensor components 𝑇 𝛬𝜆0 and the spin or spin-field
tensor components T 𝛬

𝑙0 .

Interaction 𝛬 𝐶𝛬 Space part Spin or spin-field part

Zeeman Z −𝛾𝑆 [A 𝛬
00]

𝐿 = −
√

3
𝜔0

[𝐴𝛬00]
𝐿 [T 𝛬

00 ]
𝐿 = − 1

√

3
𝐵0 𝑇

𝑗
10

isotropic shift CS −𝛾𝑆 [A 𝛬
00]

𝐿 = −
√

3
𝜔0

[𝐴𝛬00]
𝐿 [T 𝛬

00 ]
𝐿 = − 1

√

3
𝐵0 𝑇

𝑗
10

CSA CS −𝛾𝑆 [A 𝛬
2𝑞 ]

𝑃 =

√

3
√

2𝜔0

[𝐴𝛬2𝑞 ]
𝑃 [T 𝛬

20 ]
𝐿 =

√

2
3
𝐵0 𝑇

𝑗
10

Homonuclear dipolar coupling DD𝑗 𝑘 1 [A 𝛬
2𝑞 ]

𝑃 = [𝐴𝛬2𝑞 ]𝑃 [T 𝛬
20 ]

𝐿 = 𝑇 𝑗 𝑘20
Homonuclear isotropic 𝐽 -coupling J𝑗 𝑘 2𝜋 [A 𝛬

00]
𝐿 = 1

2𝜋
[𝐴𝛬00]

𝐿 [T 𝛬
00 ]

𝐿 = 𝑇 𝑗 𝑘00
Heteronuclear dipolar coupling DD𝐼 𝑆 1 [A 𝛬

2𝑞 ]
𝑃 =

√

3
2
[𝐴𝛬2𝑞 ]

𝑃 [T 𝛬
20 ]

𝐿 = 1
√

6

(

2 𝑇 𝐼10 𝑇
𝑆
10 + 𝑇

𝐼
1−1 𝑇

𝑆
11 + 𝑇

𝐼
11 𝑇

𝑆
1−1

)

Heteronuclear isotropic 𝐽 -coupling J𝐼 𝑆 2𝜋 [A 𝛬
00]

𝐿 = −
√

3
2𝜋

[𝐴𝛬00]
𝐿 [T 𝛬

00 ]
𝐿 = − 1

√

3

(

𝑇 𝐼10 𝑇
𝑆
10 − 𝑇

𝐼
1−1 𝑇

𝑆
11 − 𝑇

𝐼
11 𝑇

𝑆
1−1

)

i
s
c
d
o

b

=
∑

𝑗
[𝐴Z

00]
𝐿 𝑇 𝑗10, (C.19)

where 𝜔0 = −𝛾𝐼𝐵0 is the Larmor frequency of the spin species 𝐼 , and
he sum is taken over all spins 𝐼𝑗 . Table C.2 lists the component [𝐴Z

00]
𝐿.

C.6. Interaction with rf fields

During an rf pulse, the oscillating transverse magnetic field at time
oint 𝑡 is given by

𝐁rf(𝑡) = 𝐵rf cos(𝜔ref𝑡 + 𝜙) 𝐞𝑥𝐿 , (C.20)

where 𝜔ref is the spectrometer reference frequency and 𝜙 is the rf phase,
aking into account the sign of the gyromagnetic ratio [129,130]. The

reference frequency is defined as having the same sign as the Larmor
frequency, 𝜔0, of the irradiated spin species [129,130]. The oscillating
rf field may be decomposed into two counter-rotating parts. If 𝜔ref ≈
𝜔0, only the resonant part, rotating in the same sense as the Larmor
precession, has a significant influence on the nuclear spins.

The Hamiltonian of the interaction of the 𝑆-spin nuclear magnetic
moments with the resonant part of the oscillating transverse magnetic
field is
𝐻rf(𝑡) = −1

2
𝛾𝑆𝐵rf

(

cos(𝜔ref𝑡 + 𝜙)𝑆𝑥 + sin(𝜔ref𝑡 + 𝜙)𝑆𝑦
)

. (C.21)

The oscillatory time-dependence of the nuclear spin Hamiltonian may
e removed by transforming it into the rotating frame, the reference
rame rotating with the frequency 𝜔ref around the 𝑧-axis in the static
aboratory frame [31,32,127,128]. The resulting nuclear spin Hamil-

tonian is usually denoted 𝐻̃ but this notation is used in this series
of Introduction to Average Hamiltonian Theory [1, this work] for the
Hamiltonian in the interaction frame of the rf field. Therefore, from
ow on, all Hamiltonians are written in the rotating laboratory frame
ithout a change in notation. The rf Hamiltonian in the rotating frame
ecomes:
𝐻rf(𝑡) = 𝜔nut(𝐼𝑥 cos𝜙 + 𝐼𝑦 sin𝜙)

= 𝜔nut 𝑅𝑧(𝜙) 𝐼𝑥 𝑅𝑧(−𝜙), (C.22)

as previously presented in Eq. (I-16) in section I-2.4, where 𝜔nut is the
nutation frequency of the rf field, defined as

𝜔nut = |

1
2
𝛾𝐼𝐵rf|. (C.23)

The transformation of the nuclear spin Hamiltonian into the rotating
rame results in an additional term −𝜔ref𝐼𝑧, which might be included

into the Zeeman interaction:
𝐻Z
𝐼 = 𝛺0 𝐼𝑧, (C.24) l

24 
where the frequency offset 𝛺0 is defined as

𝛺0 = 𝜔0 − 𝜔ref. (C.25)

C.7. Chemical shift interaction

The interaction of a nuclear spin 𝐼𝑗 with the magnetic field induced
by the external fields in the electron clouds of the molecule can be
described by the chemical shift tensor ‹𝑗 :

𝐻CS
𝑗 = −𝛾𝐼 𝐈𝑇 ⋅ ‹𝑗 ⋅ 𝐁0. (C.26)

The deshielding convention [32] is used for the chemical shift tensor.
The cartesian tensor ‹𝑗 may be decomposed into irreducible spherical
tensors of rank 𝑙 = 0, 1, 2, with the corresponding cartesian tensors ‹𝑗𝑙 , as
outlined in general in Eq. (C.3). The rank 0 part is the isotropic chemical
shift. The rank 1 part is the antisymmetric chemical shift, which can be
gnored in the high-field approximation. The rank 2 part is the chemical
hift anisotropy (CSA). The sum of the cartesian tensors for the isotropic
hemical shift and the CSA, ‹𝑗0 + ‹𝑗2, is diagonal in its own PAS. The
iagonal elements are called the principal values or principal components
f the chemical shift tensor.

In the Haeberlen convention [11,131] the principal components in
the deshielding convention are labelled 𝛿𝑗𝑋 𝑋 , 𝛿𝑗𝑌 𝑌 and 𝛿𝑗𝑍 𝑍 and ordered
according to
|𝛿𝑗𝑍 𝑍 − 𝛿𝑗iso| ≥ |𝛿𝑗𝑋 𝑋 − 𝛿𝑗iso| ≥ |𝛿𝑗𝑌 𝑌 − 𝛿𝑗iso|, (C.27)

where the isotropic chemical shift is given by

𝛿𝑗iso = 1
3
(𝛿𝑗𝑋 𝑋 + 𝛿𝑗𝑌 𝑌 + 𝛿𝑗𝑍 𝑍 ). (C.28)

The CSA is associated with an anisotropic chemical shift 𝛿𝑗aniso, the
corresponding frequency 𝜔𝑗aniso and an asymmetry parameter 𝜂, defined
as

𝛿𝑗aniso = 𝛿𝑗𝑍 𝑍 − 𝛿𝑗iso, 𝜔𝑗aniso = 𝜔0 𝛿
𝑗
aniso (C.29)

and

𝜂𝑗 =
𝛿𝑗𝑌 𝑌 − 𝛿𝑗𝑋 𝑋
𝛿𝑗aniso

. (C.30)

The chemical shift Hamiltonian in the high-field approximation is given
y

𝐻CS
𝑗 =

(

[𝐴CS
00 ]

𝐿 + [𝐴CS
20 ]

𝐿) 𝐼𝑗 𝑧 (C.31)

=
(

[𝐴CS
00 ]

𝐿 + [𝐴CS
20 ]

𝐿) 𝑇 𝑗10, (C.32)

where [𝐴CS
00 ]

𝐿 (in the laboratory frame) and [𝐴CS
20 ]

𝑃 (in the PAS) are
isted in Table C.2.
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The Zeeman Hamiltonian for spin 𝐼𝑗 in the rotating frame may
be combined with the chemical shift Hamiltonian, defining both an
absolute isotropic chemical shift frequency

𝜔iso
𝑗 = 𝜔0(1 + 𝛿𝑗iso), (C.33)

and a relative isotropic chemical shift frequency with respect to the
spectrometer reference frequency

𝛺iso
𝑗 = 𝜔iso

𝑗 − 𝜔ref. (C.34)

The combined Hamiltonian has the same form as Eq. (C.31),

𝐻Z,CS
𝑗 =

(

[𝐴Z,CS
00 ]𝐿 + [𝐴CS

20 ]
𝐿
)

𝑇 𝑗10, (C.35)

where [𝐴Z,CS
00 ]𝐿 can be found in Table C.2.

Alternatively, in the Mehring convention [107] the three principal
components of the chemical shift tensor are labelled 𝛿11, 𝛿11 and 𝛿33
and ordered according to
𝛿𝑗11 ≥ 𝛿𝑗22 ≥ 𝛿𝑗33, (C.36)

where it follows that the isotropic chemical shift is given by

𝛿𝑗iso = 1
3
(𝛿𝑗11 + 𝛿

𝑗
22 + 𝛿

𝑗
33). (C.37)

When discussing the chemical shift tensor as a whole and the resulting
pectral lineshapes in static powdered samples, it has been proven to
e useful to follow the Maryland convention [131–133] and define the

span 𝛺𝑗
s and skew 𝜅𝑗 :

𝛺𝑗
s = 𝛿𝑗11 − 𝛿

𝑗
33 (C.38)

𝜅𝑗 = 3
𝛿𝑗22 − 𝛿

𝑗
iso

𝛺𝑗
s

. (C.39)

The Maryland convention is useful when discussing the chemical shift
tensor as a whole including describing the experimental powder line-
shapes and the result of quantum chemical calculations. However, as
seen above the Haeberlen convention is more applicable when dis-
cussing the isotropic and anisotropic part (CSA) of the chemical shift
tensor separately.

C.8. Direct dipole–dipole interaction

C.8.1. Homonuclear direct dipolar couplings
The direct homonuclear dipolar coupling between two spins 𝐼𝑗 and

𝐼𝑘 can be described by the traceless symmetric cartesian tensor D𝑗 𝑘:
𝐻DD
𝑗 𝑘 = 𝐈𝑇𝑗 ⋅ D𝑗 𝑘 ⋅ 𝐈𝑘. (C.40)

In the high-field approximation, the Hamiltonian of the direct dipolar
oupling may be written as

𝐻DD
𝑗 𝑘 = [𝐴DD𝑗 𝑘

20 ]𝐿 𝑇 𝑗 𝑘20 (C.41)

= 𝜔DD
𝑗 𝑘 𝑇 𝑗 𝑘20 (C.42)

= 𝜔DD
𝑗 𝑘

1
√

6

(

2𝐼𝑗 𝑧𝐼𝑘𝑧 −
1
2
(

𝐼−𝑗 𝐼
+
𝑘 + 𝐼+𝑗 𝐼

−
𝑘
)

)

, (C.43)

where [𝐴
DD𝑗 𝑘
20 ]𝑃 (in the PAS) is given in Table C.2. The homonuclear

dipolar coupling constant is defined as

𝑏𝑗 𝑘 = − 𝜇0
4𝜋

𝛾2𝐼ℏ

𝑟3𝑗 𝑘
, (C.44)

where 𝑟𝑗 𝑘 is the spin–spin internuclear distance. For example, a 13C–
3C distance of 152.2 pm corresponds to a dipolar coupling constant of
𝑗 𝑘∕2𝜋 = −2155 Hz, and a 1H⋯1H distance of 177.0 pm corresponds to
 dipolar coupling of 𝑏 ∕2𝜋 = −21.662 kHz. See also Fig. 1.
𝑗 𝑘

25 
C.8.2. Heteronuclear direct dipolar couplings
The direct heteronuclear dipolar coupling between two spins 𝐼 and

𝑆 is correspondingly given by

𝐻DD
𝐼 𝑆 = 𝐈𝑇 ⋅ D𝐼 𝑆 ⋅ 𝐒. (C.45)

In the high-field approximation, this reduces to
𝐻DD
𝐼 𝑆 = [𝐴DD𝐼 𝑆

20 ]𝐿 𝑇 𝐼10𝑇
𝑆
10 (C.46)

= 𝜔DD
𝐼 𝑆 2𝐼𝑧𝑆𝑧, (C.47)

where in the definition of [𝐴DD𝐼 𝑆
20 ]𝑃 (in the PAS), given in Table C.2,

the factor of 2 had been included in [𝐴DD𝐼 𝑆
20 ]𝑃 . However, as shown in

the last line of Eq. (C.46), the factor of 2 is often kept together with the
pin operator 𝐼𝑧𝑆𝑧, as it is part of the cyclic commutation relationship
2𝐼𝑧𝑆𝑧, 𝐼𝑥] = i2𝐼𝑦𝑆𝑧, which causes a Hamiltonian proportional to the
eteronuclear longitudinal two-spin order operator 2𝐼𝑧𝑆𝑧 to induce
 rotation in the (𝐼𝑥, 2𝐼𝑦𝑆𝑧)-plane of the (𝐼𝑥, 2𝐼𝑦𝑆𝑧, 2𝐼𝑧𝑆𝑧) operator
ubspace [31,32]. In this case the dipolar coupling frequency 𝜔DD

𝐼 𝑆 does
ot include the factor 2. The heteronuclear dipolar coupling constant
s defined as

𝑏𝐼 𝑆 = − 𝜇0
4𝜋

𝛾𝐼 𝛾𝑆ℏ
𝑟3𝐼 𝑆

. (C.48)

For example, a 13C–1H distance of 109.0 pm corresponds to a dipolar
coupling constant of 𝑏𝐼 𝑆∕2𝜋 = −23.328 kHz. A 13C–15N distance of
145.0 pm corresponds to a dipolar coupling constant of 𝑏𝐼 𝑆∕2𝜋 =
1005 Hz. See also Fig. 1.

C.9. Indirect dipole–dipole interaction

C.9.1. Homonuclear 𝑱 -couplings
The electron mediated homonuclear 𝐽 -coupling between two spins

𝑗 and 𝐼𝑘 can be described by the cartesian tensor J𝑗 𝑘:
𝐻𝐽
𝑗 𝑘 = 2𝜋 𝐈𝑇𝑗 ⋅ J𝑗 𝑘 ⋅ 𝐈𝑘. (C.49)

The cartesian tensor J𝑗 𝑘 may be decomposed into irreducible spherical
tensors of rank 𝑙 = 0, 1, 2.

The rank 0 part is the isotropic 𝐽 -coupling. The Hamiltonian for the
sotropic 𝐽 -coupling is
𝐻𝐽
𝑗 𝑘 = 2𝜋 𝐽𝑗 𝑘 𝐈𝑗 ⋅ 𝐈𝑘 (C.50)

= [𝐴𝐽𝑗 𝑘00 ]𝐿 𝑇 𝑗 𝑘00 , (C.51)

where 𝐽𝑗 𝑘 is the homonuclear isotropic 𝐽 -coupling constant which is
iven in Hz. [𝐴𝐽𝑗 𝑘00 ]𝐿 is given in Table C.2.

The rank 1 part is the antisymmetric 𝐽 -coupling, which is usually
gnored. The rank 2 part is the anisotropic 𝐽 -coupling, which may be
escribed by an anisotropic 𝐽 -coupling constant and an asymmetry
arameter. The coupling constant is usually of the same order of
agnitude as the isotropic 𝐽 -coupling constant. The corresponding

rreducible spin tensor component for the anisotropic 𝐽 -coupling is the
ame as for the direct homonuclear dipolar coupling, 𝑇 𝑗 𝑘20 .

C.9.2. Heteronuclear 𝑱 -couplings
The heteronuclear 𝐽 -coupling between two spins 𝐼 and 𝑆 is corre-

pondingly given by

𝐻𝐽
𝐼 𝑆 = 𝐈𝑇 ⋅ J𝐼 𝑆 ⋅ 𝐒. (C.52)

The Hamiltonian for the isotropic 𝐽 -coupling in the high-field approx-
imation is
𝐻𝐽
𝐼 𝑆 = 2𝜋 𝐽𝐼 𝑆 𝐼𝑧𝑆𝑧 (C.53)

= [𝐴𝐽𝐼 𝑆00 ]𝐿 𝑇 𝐼10𝑇
𝑆
10, (C.54)

where 𝐽𝐼 𝑆 is the heteronuclear isotropic 𝐽 -coupling and [𝐴𝐽𝐼 𝑆00 ]𝐿 is
given in Table C.2.
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C.10. Magic-angle spinning

For the description of MAS experiments, the transformation of the
rreducible spherical spatial tensors 𝐴𝛬𝑙 from the PAS to the laboratory
rames is done in several steps, as shown in Fig. C.1.

In the first step, the tensors for different spin interactions 𝛬 are
transformed into the molecular frame. The Euler angles 𝛺𝛬

𝑃 𝑀 = {𝛼𝛬𝑃 𝑀 ,
𝛬
𝑃 𝑀 , 𝛾𝛬𝑃 𝑀} describe the relative orientation of the PAS of the interaction
and the molecule-fixed frame.

[𝐴𝛬𝑙0]
𝐿 =

𝑙
∑

𝑚′ ,𝑚′′=−𝑙
[𝐴𝛬𝑙 𝑚′′ ]𝑃𝐷

(𝑙)
𝑚′′𝑚′ (𝛺𝛬

𝑃 𝑀 )𝐷(𝑙)
𝑚′0(𝛺𝑀 𝐿), (C.55)

where the Euler angles 𝛺𝑀 𝐿 = {𝛼𝑀 𝐿, 𝛽𝑀 𝐿, 𝛾𝑀 𝐿} describe the relative
orientation of the molecular frame to the laboratory frame. Since, in a
powdered sample, each crystallite is randomly oriented with respect to
the laboratory frame, the Euler angles 𝛺𝑀 𝐿 are random variables.

In MAS NMR the transformation from the molecular frame to the
laboratory frame is further divided. The interaction tensors are first
ransformed into the rotor frame. This transformation is described by
he Euler angles 𝛺𝑀 𝑅 = {𝛼𝑀 𝑅, 𝛽𝑀 𝑅, 𝛾𝑀 𝑅}, which are random variables

in a powdered sample. In the last step, the interactions are transformed
from the rotor frame to the laboratory frame:

[𝐴𝛬𝑙0]
𝐿 =

𝑙
∑

𝑚,𝑚′ ,𝑚′′=−𝑙
[𝐴𝛬𝑙 𝑚′′ ]𝑃𝐷

(𝑙)
𝑚′′𝑚′ (𝛺𝛬

𝑃 𝑀 )𝐷(𝑙)
𝑚′𝑚(𝛺𝑀 𝑅)𝐷(𝑙)

𝑚0(𝛺𝑅𝐿), (C.56)

Assume that the sample is rotated at the magic angle, 𝛽𝑅𝐿 = ar ct an
√

2,
ith the angular frequency 𝜔𝑟 and that 𝛼0𝑅𝐿 defines the position of the

otor at time point 𝑡 = 0. The Euler angles relating the rotor and the
aboratory frame are at time point 𝑡 conventionally given by

𝛺𝑅𝐿(𝑡) = {𝛼𝑅𝐿, 𝛽𝑅𝐿, 𝛾𝑅𝐿} = {𝛼0𝑅𝐿 − 𝜔𝑟𝑡, ar ct an
√

2, 0}. (C.57)

Using the definition of the Wigner matrices [25,28], the interaction
tensor in the laboratory frame may be written as
𝜔𝛬(𝑡) = [𝐴𝛬𝑙0]𝐿

=
𝑙

∑

𝑚=−𝑙
[𝐴𝛬𝑙 𝑚]𝑅𝑑(𝑙)𝑚0(𝛽𝑅𝐿) exp{i𝑚(𝜔𝑟𝑡 − 𝛼0𝑅𝐿)}, (C.58)

where [𝐴𝛬𝑙 𝑚]𝑅 is the interaction tensor in the rotor frame:

[𝐴𝛬𝑙 𝑚]𝑅 =
𝑙

∑

𝑚′ ,𝑚′′=−𝑙
[𝐴𝛬𝑙 𝑚′′ ]𝑃𝐷

(𝑙)
𝑚′′𝑚′ (𝛺𝛬

𝑃 𝑀 )𝐷(𝑙)
𝑚′𝑚(𝛺𝑀 𝑅). (C.59)

Note that for exact magic-angle spinning, 𝑑200(𝛽𝑅𝐿) = 0, i. e., the zeroth
component of a rank 2 spatial interaction tensor is zero.

The homonuclear part of the internal Hamiltonian under MAS at
time point 𝑡 may be written:

𝐻int(𝑡) =
∑

𝛬,𝑙 ,𝑚,𝜆
𝐻𝛬
𝑙 𝑚𝜆0(𝑡), (C.60)

where

𝐻𝛬
𝑙 𝑚𝜆𝜇(𝑡) = 𝜔𝛬𝑙 𝑚 exp{i𝑚𝜔𝑟𝑡}𝑇𝛬𝜆𝜇 , (C.61)

and

𝜔𝛬𝑙 𝑚 =
[

𝐴𝛬𝑙 𝑚
]𝑅 𝑑(𝑙)𝑚0(𝛽𝑅𝐿) exp{−i𝑚𝛼0𝑅𝐿}. (C.62)

The heteronuclear part of the internal Hamiltonian under MAS at
ime point 𝑡 may be written:

𝐻𝐼 𝑆
int (𝑡) =

∑

𝛬,𝑙 ,𝑚,𝜆𝐼 ,𝜆𝑆
𝐻𝛬
𝑙 𝑚 𝜆𝐼 0 𝜆𝑆0(𝑡), (C.63)

where

𝐻𝛬𝐼 𝑆
𝑙 𝑚 𝜆𝐼𝜇𝐼 𝜆𝑆𝜇𝑆 (𝑡) =

∑

𝛬𝐼 𝑆 ,𝑙 ,𝑚,
𝜆𝐼 ,𝜇𝐼 ,𝜆𝑆 ,𝜇𝑆

𝜔𝛬𝐼 𝑆𝑙 𝑚 exp{i𝑚𝜔𝑟𝑡}𝑇
𝛬𝐼
𝜆𝐼𝜇𝐼

𝑇𝛬𝑆𝜆𝑆𝜇𝑆 , (C.64)
26 
and

𝜔𝛬𝐼 𝑆𝑙 𝑚 =
[

𝐴𝛬𝐼 𝑆𝑙 𝑚
]𝑅
𝑑(𝑙)𝑚0(𝛽𝑅𝐿) exp{−i𝑚𝛼0𝑅𝐿𝑡}. (C.65)

Data availability

Data will be made available on request.
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