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Abstract

We determine the decay rate constants of zero-, double- and single-quantum coherence for 13C spin pairs in
magic-angle-spinning solid-state NMR. The double-quantum coherence is excited by a C7 pulse sequence and converted into
zero-quantum coherence by a frequency-selective pair of pr2 pulses. The zero-quantum coherence is reconverted into
observable magnetization by a second pair of pr2 pulses followed by a second C7 sequence. In a magnetically dilute system
where the 13C–13C distance is 0.296 nm, the relaxation rate constants are consistent with a model of uncorrelated random
fields at the two labeled 13C sites. In a fully-labelled system with a short 13C–13C distance of 0.153 nm, the measured rate
constants are inconsistent with the uncorrelated random field model. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Solid state NMR is commonly used to investigate
the molecular structure and conformation of organic
molecules, through the determination of internuclear

w x w xdistances 1–7 and molecular torsion angles 7–14 .
Many of these studies exploit samples containing
pairs of 13C nuclei, introduced by chemical means at
the molecular sites of interest.

Many NMR tools for determining molecular
structure exploit multiple quantum coherence in the
ensemble of 13C spin pairs. For example, rotational2

w xresonance 15–18 estimates internuclear distances

) Corresponding author: Fax: q46-8-152187; E-mail:
mhl@physc.su.se

by transferring magnetization between the spin sites
through an intermediate state of zero-quantum coher-
ence. Double-quantum coherence is exploited in ex-
periments for estimating molecular torsion angles
w x8–13 . These methods have been applied to large
molecular systems including membrane proteins
w x1,7,11 .

Given the important role of multiple-quantum 13C2

coherence in molecular structural studies, it is impor-
tant to investigate the factors leading to the decay of
these coherences. In particular, the measurement of
internuclear distances by rotational resonance NMR
requires an estimate of the decay time constant T ZQ

2
13 w xof the C zero-quantum coherence 17 .2

Until recently, there have been few direct experi-
mental studies of coherence decay in the solid state
NMR of 13C spin pairs. The estimate of T ZQ in2 2
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rotational resonance studies has generally relied on
measuring the single-quantum relaxation rate con-
stants through linewidth estimates, and then extend-
ing these results to the zero-quantum case by invok-

w xing a simple relaxation model 17 .
ŽThe uncorrelated random field model URF

. w xmodel is widely used for this purpose 19 . In this
model, each of the 13C sites is considered to experi-
ence a rapid, fluctuating random field. The fluctua-
tions of the fields at the two sites are considered to
be completely uncorrelated. If the random field fluc-
tuations are sufficiently fast, this model predicts
exponential decay of all the spin coherences, and a
simple relationship between the coherence decay rate
constants. If the two spins are denoted S and S ,j k

then the coherence decay rate constants are related
through

RSQ qRSQ sRZQ sRDQ 1Ž .j k

where RSQ is the decay rate constant for singlej

quantum coherence of spin j, and similarly for RSQ.k

RZQ and RDQ are the decay rate constants for zero-
quantum and double-quantum coherences in the
spin-pair ensemble. These rate constants are defined
as the inverse of the corresponding transverse relax-
ation time constants, i.e., RZQ s1rT ZQ, RDQ s2

1rT DQ, RSQ s1rT SQ and RSQ s1rT SQ.2 j 2 j k 2 k
Ž .Normally, magic-angle-spinning MAS is used to

enhance the resolution and sensitivity of the 13C
spectrum by averaging out chemical shift anisotropies
w x20 . In addition, strong proton decoupling is applied
in order to eliminate the influence of heteronuclear
1H–13C dipolar couplings. For magnetically-isolated
spin pairs, the main mechanism of 13C coherence
decay is usually incomplete suppression of the het-
eronuclear 13C–1H couplings by the rf decoupling

w xfield and the magic-angle sample rotation 21 . If the
13C spin pairs are not magnetically isolated from
each other, homonuclear dipole–dipole couplings be-
tween 13C spins on different molecules also con-
tribute to the coherence decay.

The applicability of the URF model in these
circumstances has not been tested directly. The case
of multiple-quantum relaxation for 13C spins sepa-
rated by long distances is of particular relevance,
since the determination of internuclear distances re-
quires an estimate of the zero-quantum decay time
constant T ZQ.2

In this paper, we present direct experimental mea-
surements of double-quantum, zero-quantum and sin-
gle-quantum decay rate constants for 13C spin pairs2

Ž .in MAS solids. We test the validity of Eq. 1 and
hence the applicability of the URF model.

We present experimental results on two different
w 13 xmolecular systems, 10%- 11,20- C -all-E-retinal2

w13 15 x Žand 98%- C , N -glycine see Fig. 1 and Section2
. 135 . In the retinal sample, the C internuclear dis-2

tance is 0.296 nm and the spins are well isolated by
isotopic dilution. In the glycine sample, the 13C2

internuclear distance is 0.153 nm, and there are
significant intermolecular spin–spin interactions.

15N labeling was used in the glycine sample to
avoid complications caused by dipolar couplings be-
tween the 13C spins and the quadrupolar 14 N nuclei
w x 13 1522 . The heteronuclear C– N dipolar coupling is
relatively small. Since the 15N nuclei have spins
1r2 and long spin lattice relaxation time constants,
the 15N spins do not give rise to appreciable broaden-
ing of the 13C signals in the presence of MAS. The
15N spins are ignored in the following discussion.

w 13 xIn the case of 10%- 11,20- C -retinal, we find2

that the measured decay rate constants of zero-quan-
tum and double-quantum coherence are very similar.
This is consistent with the URF model. The experi-
mental single-quantum decay rate constants are also
qualitatively consistent with the URF model.

w13 15 xIn the case of 98%- C , N -glycine, on the2

other hand, the measured decay rate constant for the

Ž .Fig. 1. Selectively labeled molecules used in this study: a
w 13 x Ž . w13 15 x11,20- C -all-E-retinal and b C , N -glycine. The site2 2

labels are indicated by circled numbers.
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zero-quantum coherence is much smaller than the
rate constant for the double-quantum decay. The
experimental single-quantum decay constants are also
inconsistent with the URF model. These discrepan-
cies may be due to the short 13C–13C distance in this
compound, and also the effect of intermolecular
13C–13C interactions.

2. Double quantum experiments

2.1. Pulse sequences

Double-quantum 13C coherence was investigated2

by the pulse sequences depicted in Fig. 2.
The row marked I denotes the rf-fields applied at

the Larmor frequency of the abundant protons, while
S denotes the rf-fields applied at the 13C Larmor

Ž .frequency rows a and b . The diagrams also show

Fig. 2. Pulse sequences for the observation of double-quantum
spin dynamics together with coherence transfer pathway diagrams.

Ž .In a , double-quantum coherence is excited by a C7-sequence and
Ž .evolves freely under the incrementable delay t . In b , the1

double-quantum evolution period t is interrupted by a strong1

p-pulse, which refocuses chemical shifts and magnetic field inho-
mogeneities. The sequences C7Žq. and C7Žy. are described in the
text.

w x Ž .the desired coherence transfer pathways 23 CTPs
for the S-spins. The overall phases of the pulse
sequence blocks are denoted f . . . f . The rf re-1 5

ceiver phase is denoted f , and the post-digitiza-rec
w xtion phase f 29 . These phases are cycled be-dig

tween different acquired transients, in order to select
signals from the desired CTP.

All sequences start with ramped cross-polarization
to enhance the transverse S-spin magnetization
w x24,25 . The following pr2-pulse converts the trans-
verse magnetization into longitudinal S-spin magne-
tization.

w xThe C7 sequence, as described in Ref. 26 , con-
verts the S-spin longitudinal magnetization into
Ž ."2 -quantum coherence, as indicated in the CTP-
diagram. After an evolution period t , the double-1

quantum coherences are reconverted into observable
magnetization by a second C7 sequence, followed by
a pr2 pulse. In Fig. 2b, a p pulse is inserted at the
centre of the double-quantum evolution period, in
order to compensate for magnetic field inhomo-

Ž .geneities see below .
The C7 sequence consist of a set of rf-cycles C ,f

each with a duration equal to t s2t r7, whereC r
< <t s 2prv is the rotation period, and v is ther r r

sample rotation frequency. The index f denotes the
overall phase of the cycle C . In the experimentsf

described here, each cycle consists of two phase-
shifted pulses, both with a flip angle of 2p , i.e.,

Ž . Ž .C s 2p 2p in conventional pulse sequencef f fqp

notation. Other compositions of the C -cycle are alsof

w xpossible 27,28 .
Two different types of C7-sequences are used,

denoted C7Žq. and C7Žy. in Fig. 2. In the se-
quence C7Žq., the phase is incremented in steps of
2pr7 between cycles, i.e., C7Žq.sC CF F Fq2p r7

C . . . C , where q is the totalFq4p r7 Fq2p Žqy1.r7

number of cycles in the block. Here F is the overall
phase of the C7Žq. sequence. The total duration of
the C7 block is qt . In the sequence C7Žy., on theC

other hand, the phase is decremented in steps of
2pr7 between cycles, i.e., C7Žy.sC CF F Fy2p r7

C . . . C .Fy4p r7 Fy2p Žqy1.r7

2.2. Double quantum excitation

Suppose the sample contains pairs of 13C sites,
denoted j and k. The isotropic chemical shifts of the
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sites are ordered such that d iso -d iso. The 13C spinsj k

in the two sites are denoted S and S . The throughj k

space dipole–dipole coupling between the spins is
given by

m g g "0 j k
b sy 2Ž .jk 3ž /4p rjk

in rad sy1, where r is the internuclear distancejk

between site j and site k. The signs of frequency and
w xphases are treated as in Ref. 29 .

The average Hamiltonian for the C7Žq. sequence,
w xas discussed in Ref. 26 , is given by

Žq. MRH t ,F ,VŽ .C 7 0

1 Ž .q Žq .Ž .q qif y y yif q q
C 7 C 7, v e S S qe S S 3Ž .½ 5C 7 j k j k2

where the double-quantum nutation frequency and
nutation phase angle during C7Žq. are equal to

1r2
343 1qsin pr14Ž .Ž .

Ž .q M Rv s b sin 2bŽ .C 7 jk520p

4Ž .

1qsin pr14Ž .
Žq. MR y1f t ,F ,g sytanŽ .C 7 0 ž /cos pr14Ž .

yv t qg MR q2F 5Ž .r 0

Here t is the starting timepoint of the C7Žq. se-0

quence, F is the overall rf phase of the sequence,
MR � MR MR MR4and V s a ,b ,g represents the Euler

angles defining the relative orientation of the molec-
ular reference frame M and the rotor-fixed frame R.
The z-axis of frame M is defined to be colinear with
the internuclear vector between sites S and S . Thej k

Euler angles are random variables in a powdered
solid. Note that only the phase of the nutation axis
depends on the Euler angle g MR. This feature is
partly responsible for the good performance of C7 in

w xa powder 26–28 .
When two C7Žq. sequences are combined, as in

Fig. 2a, it is important to ensure that the nutation
axis phases f Žq. are consistent between the twoC7

sequences, independent of the time interval between
them. Suppose that the first C7Žq. sequence starts at

Ž .timepoint marked in Fig. 2 , and has rf phase
f , while the second C7Žq. sequence starts at time2

point , and has rf phase f . Compatible nutation4

axis phases are ensured by adjusting the rf phases to
satisfy

Ž .6

where N is an integer. The sign of the signal is
inverted in sign if N is even. This equation requires
that the rf phase difference between the two C7Žq.

sequences is linearly proportional to the time interval
between the sequences.

The sequence C7Žy. has a different average
Hamiltonian, given by

Žy. MRH t ,F ,VŽ .C 7 0

1 Ž .y Žy .Ž .y qif y y yif C 7 q q
C 7, v e S S qe S S½ 5C 7 j k j k2

7Ž .

with

Ž . Ž .y qv s v 8Ž .C 7 C 7

1qsin pr14Ž .
Žy. MR y1f t ,F ,g s tanŽ .C 7 0 ž /cos pr14Ž .

qv t yg MR q2F 9Ž .r 0

where t is the initial timepoint and F is the rf0

phase. The C7Žy. sequence is not directly compatible
with the C7Žq. sequence, since the nutation axis
phases both depend on the orientational angle g MR ,
but with opposite signs. As a result, combination of a
C7Žq. sequence with a C7Žy. sequence leads to
destruction of the double-quantum filtered signal in a

w xpowder 30 .
However, if a p pulse is inserted between the

C7Žq. and C7Žy. sequences, as in Fig. 2b, the two
sequences become compatible, provided that the rf
phases are adjusted to satisfy

Ž .10
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where N is an integer, and f is the phase of the p3
Ž .pulse see Fig. 2 . The signal is inverted if N is odd.

The phase-compatibility and phase–time relation-
ships for C7 sequences are discussed in more detail

w xelsewhere 30 .

2.3. Double quantum spectrum

The pulse sequence in Fig. 2a may be used to
obtain the two-dimensional double-quantum spec-

31 w xtrum, as demonstrated previously in P NMR 31 .
Fig. 3 shows a two-dimensional spectrum ob-

tained by the pulse sequence in Fig. 2a for
w13 15 xC , N -glycine. The spinning frequency was2

5.000 kHz, and the decoupler level BI during t1

corresponded to a proton nutation frequency
v I r2ps90 kHz. A complex FT was applied innut

the t -dimension, and a cosine FT in the t -dimen-2 1

sion.
We observe two single quantum peaks in the

v -dimension, corresponding to the two 13C chemi-2

cal sites in glycine, and a single narrow peak in the
v -dimension corresponding to double-quantum co-1

Fig. 3. Two-dimensional spectrum obtained by the pulse sequence
w13 15 xin Fig. 2a on C , N -glycine. The single-quantum dimension2

is v , and the double-quantum dimension is v . The line graphs2 1

are projections of the signal-containing regions onto the frequency
axes. The double-quantum peak appears at v r2p s1.000 kHz1

and has a width at half height of ,70 Hz.

herence. The small peak at v r2p,1.6 kHz is a2

spinning sideband.
The position of the double-quantum peak reflects

evolution under the sum of isotropic chemical shifts,
and is equal to

v DQ sv iso qv iso 11Ž .j k

where v iso and v iso are the isotropic shift frequen-j k

cies for spins j and k, respectively, both specified
relative to the spectrometer reference frequency. To
obtain a non-ambiguous double-quantum peak, the
spectrometer reference frequency during t was1

shifted by 500 Hz from the mean of the two isotropic
chemical shift frequencies. The theoretical double-
quantum frequency is then v DQr2p,1.000 kHz,
which is well reproduced in the experiment.

The phases of the pulse sequence blocks f ,1

f . . . f and the rf receiver phase f were cycled2 5 rec

according to
2p m

0f s qf1 1n1

2p m
0f s floor qf , for p)1Ž .p pž /n n n . . . np 1 2 py1

f s0 12Ž .rec

Ž .where the function floor x returns the largest inte-
ger not greater than x. Here f 0 is the initial phasep

of the pulse sequence block f , and m is thep

transient counter, ms0,1 . . . n y1, where n istot tot

the number of transients in a complete phase cycle,
n n . . . n n . In the present case, the cycling pa-1 2 5 rec

rameters were n s1, n s1, n s1, n s4, n s4,1 2 3 4 5

n s1, n s16. On each transient, the post digiti-rec tot

zation phase f was adjusted to satisfy the equa-dig

tion

2f y2f yf qf qf s2f 0 y2f 0 yf 0
2 4 5 rec dig 2 4 5

13Ž .
Ž .This phase cycle selects "2 -quantum coherence

during the evolution interval t .1

The initial phases of the pulse sequence blocks
were selected according to

f 0 sf 0 sf 0 sf 0 s0 14Ž .1 2 3 5

Ž .15

where and are the initial timepoints of the
Ž .two C7 sequences see Fig. 2 . Note that this re-
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quires the phase of the second C7 block to be linked
dynamically to the interval between the two C7
sequences. This phase–time relationship is consistent

Ž .with Eq. 6 , and allows incrementation of the evolu-
tion interval t in arbitrary time steps.1

The experimental spectrum in Fig. 3 reveal a
strong and narrow double-quantum peak, but cannot
be used for an estimate of RDQ, since the double-
quantum decay contains contributions from inhomo-
geneous magnetic fields and chemical shift disper-
sion.

2.4. Decay of double quantum coherence

In the pulse sequence of Fig. 2b, a p-pulse is
inserted in the free precession interval t in order to1

refocus magnetic field inhomogeneities and chemical
shifts. This sequence allows a reliable estimation of
the homogeneous double-quantum decay rate con-
stant RDQ.

Phase cycling of the pulse sequence blocks is
Ž .used in order to select "2 -quantum coherences

during the evolution interval t . A suitable phase1
Ž .cycle is specified by Eq. 12 , with n s1, n s1,1 2

n s8, n s4, n s1, n s1, n s32. On each3 4 5 rec tot

transient, the post digitization phase f is adjusteddig

to satisfy the equation

2f y4f q2f yf qf qf2 3 4 5 rec dig

s2f 0 y4f 0 q2f 0 yf 0 16Ž .2 3 4 5

where the initial phases are

f 0 sf 0 sf 0 sf 0 s0 17Ž .1 2 3 5

Ž .18

The initial timepoints and are indicated in
Fig. 2. This link between the pulse sequence timings

Ž .and phases is compatible with Eq. 10 and allows
the evolution interval t to be incremented in arbi-1

trary steps, without loss of double-quantum filtered
signal.

2.4.1. 11,20-13C -all-E-retinal2

Fig. 4a shows experimental measurements of dou-
w 13 xble-quantum decay in 11,20- C -all-E-retinal2

Ž .circles , together with the best fit to an exponential

Fig. 4. Double quantum decays obtained by the pulse sequence in
Ž . w 13 x Ž . w13 15 xFig. 2b on a 11,20- C -all-E-retinal and b C , N -2 2

glycine. The points denote the sum of the integrated areas under
the two spectral peaks as a function of evolution interval t . The1

curves were normalized so that the point at t s0 was equal to1

1.0. In each case, the solid line is the best fit to an exponential
decay.

Ž .decay model solid line . The symbols represent the
sum of the two peak integrals in the single-quantum
spectrum, as a function of the evolution interval t .1

The experiments were performed at a decoupler
level BI corresponding to a proton nutation fre-
quency of 90 kHz, and a sample rotation frequency
of 4.500 kHz.

A rather slow damping of double-quantum coher-
ence is observed, which is described well by an
exponential decay model. The estimated decay rate
constant is RDQ s29"2 sy1 which corresponds to
a relaxation time constant of T DQ s35"2 ms.2

[13 15 ]2.4.2. C , N -glycine2
w13 15 xFig. 4b shows results for C , N -glycine. The2

experiments were performed at a decoupler level BI
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corresponding to a proton nutation frequency of 90
kHz, and a sample rotation frequency of 5.000 kHz.

In this case a rather fast decay of the double-
quantum coherence is observed. The data are well
described by a decay rate constant RDQ s197"3
sy1 which corresponds to a relaxation time constant
of T DQ s5.09"0.05 ms.2

3. Zero-quantum experiments

3.1. Zero-quantum excitation

There are a number of methods for zero-quantum
excitation in MAS NMR, such as exploiting rota-

w xtional resonance 17,18 , or by using rotor synchro-
nized multiple-pulse sequences which generate a

w xzero-quantum average dipolar Hamiltonian 32 .
In this study, C7 is used to excite double-quantum

coherence, which is then converted into zero-quan-
tum coherence by a second pulse sequence. The
reconversion of zero-quantum coherence into observ-
able magnetization is carried out by reversing the
process, again using an intermediate double-quantum
state.

The appropriate pulse sequences are shown in
Fig. 5. The sequence C7Žq. is followed by two

Fig. 5. Pulse sequences for the observation of zero-quantum spin
dynamics together with the coherence transfer pathway diagram.

Fig. 6. Magnification of the central part of the pulse sequences in
Fig. 5.

strong, non-selective pr2-pulses, separated by an
interval t . This sequence converts double-quantum
coherence into zero-quantum coherence by generat-
ing a selective p rotation of one of the spins in each
13C pair. For clarity, the relevant pulse sequence2

elements are displayed on an expanded scale in Fig.
6. The letters a to h refer to the timepoints in Fig.
6a.

If the density at time point is assumed to be
proportional to the operator S qS , then the dou-j z k z

ble-quantum part of the spin density operator directly
after the C7Žq. excitation block is

1
DQ yif q q if y yr a ,A e S S qe S S 19Ž . Ž .Ž .j k j k2

where A is the amplitude of excited double-quantum
coherence, and f is the double-quantum phase. These
parameters are given by

Ž .qC 7Assin v t 20Ž .Ž .exc

p
Žq.fsf y 21Ž .C 7 2

where t is the duration of the first C7Žq. block.exc

The effect of the two-pulse sequence may be
written

p p
freeU d ,a sR U c,b R 22Ž . Ž . Ž .y xž / ž /2 2
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where the pulse operators are

p p
R sexp yi S 23Ž .x x½ 5ž /2 2

p p
R sexp yi S 24Ž .y y½ 5ž /2 2

freeŽ .and U c,b denotes the free precession propaga-
tor for the spin system over the time interval b´c.

If the dipole–dipole couplings and the CSA are
neglected over the short interval t , the pulse se-
quence propagator may be factorized

U d ,a ,U d ,a U d ,a 25Ž . Ž . Ž . Ž .j k

where

p p
j j iso jU d ,a ,R R v t R 26Ž . Ž .Ž .j y z j xž / ž /2 2

and

R j b sexp yibS j 27Ž . Ž .� 4m m

Here, v iso is the isotropic shift frequency of spinj
Ž .j relative to the spectrometer reference frequency ,

and S j is an angular momentum operator for spin j,m

with msx, y or z. Similar equations apply for spin
k.

If the spectrometer reference frequency is set to
the mean of the isotropic shift frequencies, then the
chemically-shifted frequency offsets correspond to

1
iso isov sq v 28Ž .j D2

1
iso isov sy v 29Ž .k D2

where v iso sv iso yv iso.D j k

If the free precession delay is set to tsprv iso,D

then the individual spin propagators are given by

p p p
j j jU d ,a ,R R RŽ .j y z xž / ž / ž /2 2 2

p
j jsR R p 30Ž . Ž .z xž /2

p p p p
k k k kU d ,a ,R R y R sR yŽ .k y z x zž / ž / ž / ž /2 2 2 2

31Ž .

The effect of the two-pulse sequence upon the
spin density operator at timepoint a may be deduced
through the transformations

y1" .U d ,a S U d ,a s"iS 32Ž . Ž . Ž .j j j j

y1" "U d ,a S U d ,a s"iS 33Ž . Ž . Ž .k k k k

The zero-quantum part of the spin density operator at
timepoint d is

1
ZQ yif y q if q yr d ,A ye S S ye S S 34Ž . Ž .Ž .j k j k2

This represents the conversion of double-quantum
into zero-quantum coherence, with faithful transfer
of the phase information.

3.2. Zero-quantum precession

The pulse sequence in Fig. 5a is appropriate for
studies of the free precession of zero-quantum coher-
ence. The zero-quantum coherence is allowed to
precess freely for an interval t , and is then recon-1

verted into observable signal by transfer back into
double-quantum coherence, followed by conversion
into longitudinal magnetization by a second C7 se-
quence.

The dynamics of zero-quantum coherences in ro-
tating solids are complicated, especially in the vicin-

w xity of the rotational resonance condition 17,18 ,
v iso snv , where n is a small integer. At theseD r

conditions, zero-quantum coherence is interchanged
with longitudinal difference magnetization in an os-
cillatory fashion.

In this paper, the experiments are performed well
< iso < < Žn. <off rotational resonance, i.e., v ynv 4 ṽD r B

for all n, where v Žn. is the resonant part of the˜ B

through space dipole–dipole coupling between spins
w xS and S , as described in Ref. 17 . Under thesej k

conditions, the behavior of the zero-quantum coher-
ence is relatively simple. If the homonuclear dipolar
coupling is weak, the zero-quantum coherence oscil-
lates at the frequency v ZQ ,v iso, where v iso is theD D

isotropic shift frequency difference, and decays with
ZQ Ž ZQ .y1the rate constant R s T .2

In the case of strong homonuclear coupling be-
tween spin S and S , this simple picture must bej k
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modified. A better approximation for the zero-quan-
tum precession frequency is

1r222 Ž .ZQ iso nv ,nv q v ynv q v 35Ž .˜Ž .½ 5r D r B

where n is the closest integer to v isorv . TheD r
Ž .second term in Eq. 35 includes an off-resonant

dipolar shift of the zero-quantum precession fre-
quency. This term is orientation-dependent and
causes inhomogeneous broadening of the zero-quan-
tum spectrum, as described below. In addition to this
shift, the zero-quantum precession occurs around a

w xtilted effective field in the zero-quantum frame 18 .
Although the tilt angle of the effective zero-quantum
field is small if the experiment is conducted far from
rotational resonance, there are still noticeable effects
on the zero-quantum spin dynamics.

If the tilt of the zero-quantum effective field is
ignored for simplicity, the zero-quantum spin density
operator at timepoint e is given by

1
ZQ ZQ y qr e ,A exp i v t yf S SŽ . � 4Ž .1 j k2

ZQ q yqexp yi v t yf S S� 4Ž .1 j k

=exp yRZQ t 36Ž .Ž .1

3.2.1. Zero-quantum r double-quantum coherence
transfer

After the evolution interval t , a further two-pulse1

sequence is applied between timepoints e and h
Ž .Fig. 6a . This sequence reconverts zero-quantum
coherence into double-quantum coherence.

This sequence generates spin rotation operators
with the following form:

U h ,e ,U h ,e U h ,e 37Ž . Ž . Ž . Ž .j k

where

p p p
j j jU h ,e ,R R R yŽ .j x z yž / ž / ž /2 2 2

p
j jsR p R 38Ž . Ž .x z ž /2

p p p
k k kU h ,e ,R R y R yŽ .k x z yž / ž / ž /2 2 2

p
ksR y 39Ž .z ž /2

These operators produce the transformations

y1" .U h ,e S U h ,e s.iS 40Ž . Ž . Ž .j j j j

y1" "U h ,e S U h ,e s"iS 41Ž . Ž . Ž .k k k k

The double-quantum part of the spin density operator
at timepoint h is therefore

1
DQ ZQ q qr h sA exp i v t yf S SŽ . � 4Ž .1 j k2

ZQ y yqexp yi v t yf S S� 4Ž .1 j k

=exp yRZQ t 42Ž .Ž .1

In the case of no evolution interval t s0, the result1
Ž .is the same as in Eq. 19 , i.e., directly after C7.

Hence for t s0, the phases of the double-quantum1

coherence are restored in such a way that the second
Ž Žq..C7 sequence C7 reconverts the double-quantum

coherences into observable magnetization, while
avoiding destructive interference between the differ-
ent orientational components.

For t /0, the zero-quantum coherences precess1

and causes a modulation of the NMR signal at the
zero-quantum precession frequency, v ZQ ,v iso.D

3.3. Zero-quantum spectrum

Fig. 7a shows a two-dimensional spectrum ob-
tained by the pulse sequence in Fig. 5a on
w13 15 xC , N -glycine. A projection on the v -axis is2 1

shown above the plot. The spinning frequency was
v r2ps5.000 kHz and the decoupler field BI cor-r

responded to a 1H nutation frequency v I r2ps90nut

kHz. The spectrometer reference frequency was equal
to the mean of the two isotropic shift frequencies. A
complex FT was applied in the t -dimension, and a2

cosine FT in the t -dimension.1
Ž .The phase cycling parameters were as in Eq. 12

with n s1, n s1, n s4, n s1, n s4, n s4,1 2 3 4 5 6

n s1, n s1, n s64. On each transient, the7 rec tot

post digitization phase f was adjusted to satisfydig

the equation

2f y2f q2f y2f yf qf qf2 3 5 6 7 rec dig

s2f 0 y2f 0 q2f 0 y2f 0 yf 0 43Ž .2 3 5 6 7
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Ž . 13Fig. 7. a Two dimensional C-spectrum obtained by the pulse
w13 15 xsequence in Fig. 5a on C , N -glycine. The single-quantum2

dimension is v , and the zero-quantum dimension is v . The line2 1

graphs are projections of the signal-containing regions onto the
frequency axes. The dashed line indicates the expected zero-

Ž . Ž .quantum frequency, neglecting dipolar shifts see text . b A spin
dynamical simulation of the v -projection.1

where the initial phases for the phase cycle were

f 0 sf 0 sf 0 sf 0 sf 0 sf 0 s0 44Ž .1 2 3 4 5 7

Ž .45

and the timepoints and are indicated in Fig.
5.

The spectrum displays prominent zero-quantum
peaks at the frequency coordinate v r2p,18001

Hz. These peaks do not appear exactly at the isotropic
shift frequency difference v isor2p s 6620 Hz,D

whose position is indicated by the dotted line, after
taking into account folding caused by the restricted

spectral bandwidth in the v dimension, which was1

5000 Hz. There are also small peaks at v s0.1

The broadening and shift of the zero-quantum
peaks are both due to the strong homonuclear 13C–
13C couplings in this compound. The precession of
the zero-quantum coherences around a tilted effec-
tive field causes small signals at v s0.1

A spin dynamical simulation of the experiment
yields the two-dimensional spectral projection shown
in Fig. 7b. This simulation was performed using the

w xmethods described in Ref. 18 . The shift and the
broadening of the experimental zero-quantum spec-
trum, as well as the v s0 peaks, are well repro-1

duced in the simulation.
Because of these inhomogeneous dipolar shifts,

the pulse sequence in Fig. 6a cannot be used for
measurement of the zero-quantum decay rate con-
stant RZQ.

3.4. Decay of zero-quantum coherence: measurement
of T ZQ

2

In Fig. 5b, a p-pulse is inserted in the middle of
the zero-quantum evolution interval t . The p-pulse1

refocuses the inhomogeneous dipolar shifts of the
zero-quantum peaks, and allows a more straightfor-
ward estimate of the zero-quantum decay rate con-
stant RZQ.

Consider the first two pulses in the expanded
diagram of Fig. 6b. From timepoint a to timepoint
d, the sequence is identical to that in Fig. 6a.

At timepoint e, the zero-quantum part of the
density operator is given by

1 t1ZQ ZQ y qr e ,A yexp i v yf S SŽ . j k½ 5ž /2 2

t1ZQ q yqexp yi v yf S Sj k½ 5ž /2

=
1

ZQexp y R t 46Ž .1½ 52

if the tilt of the zero-quantum effective field is
ignored.

The effect of the p-pulse may be written

y1. " " .R p S S R p sS S 47Ž . Ž . Ž .x j k x j k
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and hence

1 t1ZQ ZQ y qr f ,A exp yi v yf S SŽ . j kž /2 2

t1ZQ q yqexp i v yf S Sj kž /2

=
1

ZQexp y R t 48Ž .1½ 52

This indicates that the p-pulse changes the phase
of the zero-quantum coherence. This phase change
must be compensated by the last two-pulse sequence
in order to obtain a finite signal in a powder.

Precession of the zero-quantum coherence in the
interval f to g gives a zero-quantum spin density
operator of the form

1
ZQ if y q yif q yr g ,A e S S qe S SŽ . Ž .j k j k2

=exp yRZQ t 49Ž .� 41

which is now independent of the inhomogeneous
zero-quantum precession frequency v ZQ.

The final two pulse sequence produces spin rota-
tion operators with the following form

p p p p
j j j jU j, g ,R R R sR 50Ž . Ž .j x z y zž / ž / ž / ž /2 2 2 2

p p p
k k kU j, g ,R R y RŽ .k x z yž / ž / ž /2 2 2

p
k ksR p R y 51Ž . Ž .x z ž /2

This sequence leads to the following transforma-
tions:

y1" "U j, g S U j, g s"iS 52Ž . Ž . Ž .j j j j

y1" .U j, g S U j, g s"iS 53Ž . Ž . Ž .k k k k

The double-quantum density operator at timepoint
j is therefore

1
DQ yif q q qif y yr j ,A e S S qe S SŽ . Ž .j k j k2

=exp yRZQt 54Ž .� 41

This result is the same as at timepoint a in Eq.
Ž .19 , except for the zero-quantum decay factor. This

ensures that the last C7 sequence reconverts double-
quantum coherence into observable signal, without
destructive interference between the orientational
components. The zero-quantum decay constant RZQ

may be estimated by conducting a series of experi-
ments with different values of the evolution interval
t .1

[ 13 ]3.4.1. 11,20- C -all-E-retinal2
Ž .Fig. 8a shows experimental points circles for the

labelled retinal, obtained with the pulse sequence in
Fig. 5b. The experiment was performed at a decou-
pler level BI corresponding to a proton nutation
frequency of 90 kHz, and a sample spinning fre-
quency of 4.5 kHz. Each point represent the sum of
the spectral peak integrals as a function of evolution
interval t .1

Ž . w 13 x Ž .Fig. 8. Zero-quantum decay for a 11,20- C -retinal and b2
w13 15 xC , N -glycine. The filled circles denote the sum of the inte-2

grated area under the two spectral peaks at indicated evolution
intervals t , normalized so that the first point in each series is1

equal to 1.0. The solid lines are the result of accurate numerical
simulations. The dashed lines are best fits to exponential decays.
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Ž .The phase cycling parameters were as in Eq. 12
with n s1, n s1, n s4, n s1, n s4, n s4,1 2 3 4 5 6

n s1, n s1, n s64. On each transient, the7 rec tot

post digitization phase f was adjusted to satisfydig

the equation

q2f y2f q2f y2f yf qf qf2 3 5 6 7 rec dig

s2f 0 y2f 0 q2f 0 y2f 0 yf 0 55Ž .2 3 5 6 7

with initial phases given by

f 0 sf 0 sf 0 sf 0 sf 0 sf 0 s0 56Ž .1 2 3 4 5 7

Ž .57

The results in Fig. 8a display a rather slow, mono-
tonic damping of the zero-quantum coherence.

The dashed line is the best fit of these experimen-
tal points to an exponential decay. This leads to an
estimate of the zero-quantum decay rate constant
RZQ s31"2 sy1, corresponding to a zero-quantum
relaxation time constant T ZQ s32"2 ms.2

The solid line is a simulated curve of the zero-
quantum spin dynamics, using the methods described

w xin Ref. 18 . The zero-quantum decay rate constant
RZQ s31 sy1 was used. The simulated curve coin-
cides almost exactly with the exponential decay curve
Ž .dashed line . The spin interaction parameters are
given below.

[13 15 ]3.4.2. C , N -glycine2
Ž .Fig. 8b shows experimental points circles for

w13 15 xC , N -glycine. The experiment was performed2

at a decoupler level BI corresponding to a proton
nutation frequency of 90 kHz, and a sample spinning
frequency v r2ps5.000 kHz. The phase cyclingr

Ž . Ž .parameters were as given in Eqs. 55 – 57 .
The experimental points show oscillations of sig-

nal amplitude as a function of t . These oscillations1

are due to zero-quantum precession about a tilted
effective field, in the case of strong homonuclear
13C–13C couplings, as described above. A simulation
of the experiment reproduces these oscillations rather

Ž .well solid line . This simulation assumed an initial
zero-quantum spin density operator given by Eq.
Ž .34 , with double-quantum phases specified in Eqs.
Ž . Ž .21 and 5 . The form of the oscillations proved to
be sensitive to the initial phase of the zero-quantum
coherences.

The decay rate constant of the zero-quantum co-
herences, as determined by accurate spin dynamical
simulations, is RZQ s111"2 sy1. A similar result
is obtained by simply fitting the experimental points

Ž ZQ y1.to an exponential decay R s108"5 s .

4. Decay of single-quantum coherence

We also measured single-quantum decay rate con-
stants by using Hahn echo pulse sequences to com-
pensate for static magnetic field inhomogeneities
w x33 . Instead of using a strong non-selective p-pulse,
we employed the two-pulse selective inversion se-
quences discussed above. The selective p-rotation on
one of the spin sites ensures that isotropic J-cou-
pling and off-resonant dipolar shifts are both refo-
cused.

The appropriate pulse sequences are shown in
Fig. 9. The spectrometer reference frequency is set to
the mean of the two isotropic chemical shift frequen-
cies. S-spin transverse magnetization is created by
ramped cross-polarization from the 1H-spins. The

Fig. 9. Pulse sequence for investigation of single-quantum coher-
ence decay. The delay t is equal to t sp rv iso, where v iso sD D

v iso y v iso is the isotropic chemical shift frequency difference.j k
Ž .Scheme a is used for measuring the single-quantum coherence

Ž .decay of the most-shielded site. Scheme b is used for measuring
the single-quantum coherence decay of the least-shielded site.
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single quantum coherences are allowed to precess for
an interval 1r2 t , chosen to be an integer multiple1

of the rotor period t s2prv . The two-pulse se-r r

quence is applied, followed by a further interval
1r2 t . The decay curve of single-quantum coher-1

ence is obtained by incrementing the t -interval,1

keeping the two-pulse sequence in the middle, and
measuring the area under the appropriate spectral
peak as a function of t . The decay curve is fitted to1

a single exponential function to yield the relaxation
time constant T SQ, where j is the spin site which is2 j

selectively inverted. The experiment is repeated with
different phases of the two-pulse sequence in order
to measure the decay of the other spectral peak k. If

Ž .the two-pulse sequence has the form pr2 ytyx
Ž . Ž . isopr2 scheme a in the figure , where tsprv ,y D

then the most-shielded site j is inverted; if the
Ž .two-pulse sequence has the form pr2 ytyx

Ž .pr2 , then the least-shielded site k is invertedy
Ž .scheme b in the figure .

Correct operation of these sequences requires
careful attention to the signs of the radio-frequency
phases. One must take into account the sign of the
Larmor frequency as well as the rf mixing pathway

Ž w xin the spectrometer console see Ref. 29 and Sec-
.tion 5 .

[ 13 ]4.1. 11,20- C -all-E-retinal2

Ž .Fig. 10a shows experimental points symbols for
the labelled retinal obtained with the pulse sequence
in Fig. 9.

Each point represent the relevant spectral peak
integral as a function of evolution interval t . The1

experiment was performed at a sample rotation fre-
quency of v r2ps4.500 kHz and a decoupler fieldr

BI corresponding to a proton nutation frequency of
90 kHz.

The following four-step phase cycle was used to
select the CTP indicated in Fig. 9:

f s0 58Ž .1

f sf sf sp mr2 59Ž .2 rec dig

where m is the transient counter.
The estimated decay rate constant for the 11-13C-

site was RSQ s20"2 sy1 corresponding to a relax-k
SQ Žation time constant of T s49"4 ms dashed2 k

Ž . w 13 x Ž .Fig. 10. Single-quantum decay for a 11,20- C -retinal and b2
w13 15 x Ž . 13C , N -glycine. In a , the filled squares denote the 20- C-site2

13 Ž .and open circles the 11- C-site. In b , the filled squares denote
Ž 13 . Ž 13 .the methylene 2- C site and open circles the carboxyl 1- C

site. Each series is normalized so that the first point is equal to
1.0. The lines are best fits of the experimental data to exponential
decays.

. 13line . The corresponding figures for the 20- C-site
SQ y1 SQ Žwere R s15"3 s and T s69"5 ms solidj 2 j

.line .

[13 15 ]4.2. C , N -glycine2

Ž .Fig. 10b shows experimental points symbols for
the labelled glycine sample obtained with the pulse
sequence in Fig. 9.

Each point represents the relevant spectral peak
integral as a function of evolution interval t . The1

experiment was performed at a sample rotation fre-
quency of v r2ps5.000 kHz and a decoupler fieldr

BI corresponding to a proton nutation frequency of
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90 kHz. The phase cycling was the same as in the
retinal experiment.

The measured single-quantum decay rate con-
w13 15 xstants for C , N -glycine were for the carboxyl2

site, RSQ s113"2 sy1 corresponding to a relax-k
SQ Žation time constant of T s8.82"0.08 ms solid2 k

.line . The corresponding figures for the methylene
site were RSQ s154"2 sy1 and T SQ s6.49"0.08j 2 j

Ž .ms dashed line .

5. Experimental

5.1. Samples

w 13 x11,20- C -all-E-retinal was synthesized as de-2
w xscribed in Ref. 34 . The labeled retinal was re-crys-

tallized from liquid n-pentane with a nine-fold ex-
Žcess of natural abundance retinal Fluka, Switzer-

.land at y808C. Approximately 60 mg of the 10%-
w 13 x11,20- C -all-E-retinal was packed in a Chemag-2

netics zirconium oxide rotor with outer diameter 4
mm.

w13 15 x Ž 13 15 .C , N -glycine 98% C, 96–99% N was2

purchased from Cambridge Isotopes and used with-
out further purification or dilution. Approximately 59
mg was packed in a Chemagnetics zirconium oxide
rotor with outer diameter 4 mm.

5.2. Experiments

All experiments was performed on a Chemagnet-
ics CMX-200 spectrometer operating at a magnetic
field of 4.7 T. A Chemagnetics triple-resonance MAS
probe with a 4 mm spinner module was used. The
spinning frequency was stabilized to "2 Hz.

In all experiments, the cross-polarization interval
was equal to 2.0 ms. The 13C rf-field intensity during
cross-polarization was ramped to increase repro-

w x 1ducibility 25 . The H pr2-pulse duration was be-
tween 5.2 and 5.9 ms.

w 13 xIn the experiments on 11,20- C -retinal, the2
13C-field during the C7 sequence corresponded to a
S-spin nutation frequency of v S r2ps35 kHz. Thenut

C7 excitation sequence employed 50 rf cycles with a
total excitation interval t s3.175 ms.exc

w13 15 xIn the experiments on C , N -glycine, the rf-2

field on the 13C-spins during C7 corresponded to a
S-spin nutation frequency v S r2ps32.8 kHz. Thenut

C7 excitation sequence employed 10 rf-cycles, occu-
pying a total excitation interval t s571 ms.exc

In all pulse sequences, the indicated phases de-
note nutation axis phases of the spins. Care has to be
taken to implement these phases with the correct
sign in the pulse programmer, as discussed in Ref.
w x29 . On our CMX-200 console, the rf synthesizer
phases coincide with the nutation axis phases of the
spins, due to two consecutive sign changes: the first
due to a down-conversion of a 283 MHz intermedi-
ate frequency signal; the second due to the negative
sign of the Larmor frequency.

5.3. Simulations

w 13 xThe simulation on 11,20- C -all-E-retinal em-2
w xployed the following parameters 4 : shift anisotropy

d aniso and asymmetry parameter h for the 11-13C-k k

site: 112.2 ppm and 0.72. Shift anisotropy d aniso andj

asymmetry parameter h for the 20-13C-site: 15.5j

ppm and 1.0. Isotropic shift difference d iso yd iso sk j
Ž121.2 ppm Deshielding convention used through-

.out . Through space dipolar coupling b r2psjk

y293 Hz, corresponding to an internuclear distance
w xrs0.296 nm 35 . The molecules frame M was

chosen so that the z-axis was along the internuclear
vector; the principal axis frames of the 11-13C- and
the 20-13C-site shift tensors were oriented at angles

PM � 4 PM � 4V s y318,858,y878 and V s 0,578,0 withk j
w xrespect to the molecule fixed frame 5 . The three

bond 13C–13C isotropic J-coupling was ignored.
w13 15 xThe simulation on C , N -glycine employed2

w x 13the following parameters 36 : for the COO-site:
shift anisotropy d aniso sy74.5 ppm and asymmetryk

parameter h s0.88. For the 13CH -site: shift anisot-k 2

ropy d aniso sy19.43 ppm and asymmetry parameterj

h s0.98. Isotropic shift difference d iso yd iso s130j j k

ppm. Through space dipolar coupling b r2psjk

y2135 Hz, corresponding to an internuclear distance
w xrs0.1526 nm 37 . A molecule fixed frame M

with a z-axis along the internuclear vector was cho-
sen; the principal axis frame of the carboxyl
and the methylene shift tensors were oriented

PM � 4 PMat angles V s y0.78,88.58,42.58 and V sk j
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� 499.48,146.08,138.98 with respect to the molecule
fixed frame. The isotropic J-coupling was J s53.1jk

w xHz 36 .

6. Discussion

The URF model may be tested by comparing the
Ž .predictions of Eq. 1 with experimental results. For

w 13 xthe case of 10%- 11,20- C -all-E-retinal, the mea-2

sured decay rate constants were RZQ s31"2 sy1,
RDQ s29"2, RSQ s15"3 sy1, RSQ s20"2 sy1,j k

obtained under identical experimental conditions.
These are reasonably consistent with the URF model.
In particular, the measured zero and double-quantum
rate constants are in good mutual agreement. The
sum of the single-quantum rate constants RSQ qRSQ

j k

s35"5 sy1, is also in reasonable agreement with
the double- and zero-quantum rate constants. This
supports the idea that the URF model is rather well
applicable to 13C spins separated by rather long

Ž .distances 0.297 nm in the present case .
w13 15 xIn the case of 98%- C , N -glycine, we obtain2

the multiple-quantum decay rate constants RZQ s
111"2 sy1 and RDQ s197"2 sy1. The measured
single-quantum rate constants for the glycine sample
were RSQ s154"2 sy1 for the methylene site andj

RSQ s113"2 sy1 for the carboxyl site. These fig-k

ures are inconsistent with the URF model. The dis-
crepancy may be connected to correlations in the
random fields, as well as the strong intermolecular
homonuclear couplings in this non-diluted com-
pound.

Future experiments are planned on isotopically-di-
luted labelled glycine samples, in order to investigate
further the mechanism of the deviations from the
URF model.

In conclusion, the measured relaxation rate con-
stants for 13C spin pairs in rotating solids support the
validity of the URF model at rather long 13C–13C
distances. This result is of immediate relevance to
molecular structural studies by rotational resonance.

The URF model is in clear discrepancy with
w13 15 xexperiments in the case of C , N -glycine. Fortu-2

nately, the estimation of internuclear distances by
rotational resonance is very insensitive to the as-
sumed relaxation behavior in the case of short 13C–
13C distances.
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