Supplementary Material: ¹⁴N Overtone NMR Spectra under Magic Angle Spinning Experiments and Numerically Exact Simulations

Luke A. O'Dell[†] and Andreas Brinkmann*

Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, M40, Ottawa, ON, K1A 0R6, Canada

*Corresponding author e-mail: Andreas.Brinkmann@nrc-cnrc.gc.ca

[†]Present address: Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria, 3220, Australia

S1. Dependence of the ¹⁴N overtone NMR signal on sample spinning frequency

The simulations in Figure S1 illustrate the dependence of the ¹⁴N overtone NMR signal on the magic-angle-spinning frequency ω_r calculated for a powdered sample of glycine. All simulations were done employing an rf pulse of 0.1 µs duration with $\omega_{rf}^{14_N}/2\pi = 161.5$ kHz. Figure S1a shows the simulated static spectrum and overtone sideband patterns. The positions of the centerband, +1 and +2 overtone sidebands are indicated by visual guides. Figure S1b depicts the center-of-mass frequency Ω_{CM} of the static powder pattern and +2 overtone sidebands as a function of the MAS frequency ω_r . The fitted value for the slope of the straight line is given by 2.

S2. Width of ¹⁴N overtone MAS +2 sideband powder lineshape

Figure S2 depicts the width Δ of the simulated ¹⁴N overtone MAS +2 sideband powder lineshape for $\eta_Q = 0.0$ as a function of $\omega_Q^2 / (2\pi\omega_0)$. All simulations were done employing an rf pulse of 0.2 µs duration with $\omega_{rf}^{^{14}N} / 2\pi = 161.5$ kHz. The results can be fitted to a straight line with slope 42.3.

Figue S1.

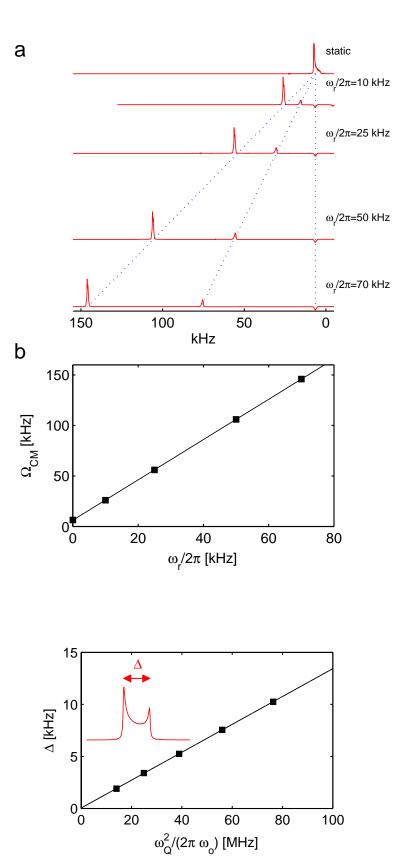


Figure S2.