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ABSTRACT

Shared research facilities (SRFs) offer researchers cost-effective access to advanced analytical instrumentation that individual laboratories may find challenging to
acquire or maintain. By centralizing resources, SRFs support a diverse user community including students, early-career scientists, senior principal investigators, and
industrial collaborators, while providing expert technical support and ensuring efficient use of infrastructure and funding. These facilities not only drive research
productivity and foster interdisciplinary collaboration, but also serve as centers for training the next generation of scientists. In this article, SRFs that offer solid-state
nuclear magnetic resonance (NMR) capabilities are discussed, highlighting representative examples, their accessibility, governance models, technical operations,
application areas, and data-sharing practices. Usage data reveal that solid-state NMR-based SRFs strongly align with high-priority research goals, contributing to
impactful projects across chemistry, life sciences, and materials science, as reflected in publication outcomes. The article also emphasizes that the collaborative
networks among SRFs enhance knowledge exchange and resource coordination. Such coordinated inter-facility partnerships are expected to address emerging
challenges, ultimately supporting sustainable infrastructure that meets the evolving needs of the solid-state NMR community.

1. Introduction

Solid-state NMR spectroscopy has become an indispensable charac-
terization technique for elucidating the atomic- and molecular-level
structures of a wide array of solid materials, particularly for systems
that push the limits of conventional analytical techniques and/or where
other methods provide ambiguous structural information. Emerging in
the mid-20th century, NMR spectroscopy evolved into sophisticated
approaches to probe nuclear spins in bulk matter, laying the foundation
for today’s advanced characterization spanning solids, liquids, and soft
matter (e.g., polymers, gels, colloids, foams, biological materials). In the
case of solid-state NMR, overcoming early challenges [1], such as
addressing inherent sensitivity and resolution limitations, has driven
transformative developments in the field. Notably, in the 1970s, tech-
niques like Magic-Angle Spinning (MAS) and Cross-Polarization (CP)
significantly improved spectral resolution and sensitivity [2,3]. The
1980-1990s saw continued progress, including the advent of
high-power radiofrequency (RF) amplifiers, commercialization of
CP/MAS probes, access to magnetic fields of >10 T, and 2D correlation
experiments [4-10]. All of this paved the way for high-resolution sol-
id-state NMR studies of polycrystalline materials, polymers, pharma-
ceuticals, glasses, and biological solids, including membrane proteins
and amyloids. New pulse sequences involving dipolar decoupling and
recoupling for internuclear distance measurements, and those for sep-
aration of the effects of isotropic and anisotropic interactions arising for
half-integer quadrupolar nuclei [11,12], have opened further opportu-
nities for the study of inorganic, hybrid, and complex biological mate-
rials. These advances have positioned solid-state NMR spectroscopy to
fill information gaps left by X-ray diffraction (XRD), neutron dif-
fraction/scattering, and/or electron microscopy (EM) techniques,
especially for systems lacking long-range order or requiring detailed
structural information on local atomic environments.

In the 21st century, solid-state NMR spectroscopy continues to
advance to meet complex scientific demands for higher sensitivity,
resolution, faster data collection, and higher throughput analyses [8].
Structural characterization of volume-limited samples is increasingly
performed in their native or functional states—examples include bio-
macromolecules in complex cellular environments, protein-drug com-
plexes to natural biopolymers including biomass and plant cell walls,
catalytic supports, functional polymers, gels and electrolytes, coatings,
energy materials, and semiconductor thin films used in optoelectronics,
photonics, and energy conversion/storage devices [13-18]. Large-scale
SRFs for solid-state NMR have played, and will continue to play, trans-
formative roles across scientific disciplines and are important for
advancing research in all aspects of chemistry, materials multidisci-
plinary, and life sciences. Progress in solid-state NMR-based structural
analysis increasingly depends on access to state-of-the-art instrumen-
tation and methods, including high magnetic fields (>800 MHz) [19],
robust pulse sequences and optimization of experimental parameters for

high-quality data acquisition [7,20], innovations in probe technology
such as fast MAS systems (Vo = 30-160 kHz) [21-23]. Additional ca-
pabilities such as MAS cryoprobes for room-temperature signal
enhancement [24-26], and dynamic nuclear polarization (DNP) mea-
surements at relatively low-temperatures [27-29], and those enabling a
broad range of variable-temperature measurements [30,31], as well as
those suitable for in situ experiments, and in operando studies [18,
32-35], have also become equally important. Solid-state NMR can act in
a complementary manner with other structure determination tech-
niques, which has led to the development of fields such as NMR crys-
tallography (i.e., the combined use of solid-state NMR, XRD methods,
and molecular modeling to predict, solve, and refine crystal structures)
[36,37]. Alongside, computational prediction of NMR parameters, ge-
ometry optimization, and machine learning (ML)/artificial intelligence
(AI)-driven structure determination are growing in popularity, which
will be essential for NMR data interpretation and discovery acceleration
[38-45].

The growing complexity and costs of these technologies, plus the
expertise required for their optimal use, make national and regional
shared solid-state NMR facilities strategically essential. Key idea of
shared resources is to provide centralized access, expert support, and
state-of-the-art infrastructure for high-end experimentation. In doing so,
they create new opportunities in solid-state NMR for both experts and
non-experts alike, fostering broader interdisciplinary collaboration.

This article showcases the growing influence of SRFs in pushing
solid-state NMR capabilities and applications forward. It also illustrates
how coordinated, multi-institutional networks and shared infrastructure
enable transformative research that may be often challenging to pursue
within the confines of individual research groups and laboratories.

2. Examples of shared NMR infrastructure and facilities

Several SRFs across the United States, Canada, the United Kingdom,
Europe, South America, the Middle East, Africa, Australia, and Asia
provide access to solid-state NMR infrastructure, offering complemen-
tary resources and domain-specific expertise. These centers house
diverse instrumentation: solid-state and DNP-NMR spectrometers across
a range of field strengths, custom probes, extreme-condition and in siti/
in operando setups, and apparatus for DNP enhancements. Many of these
NMR-based SRFs are integrated into broader research networks and
paired with facilities for sample preparation, high-throughput data
acquisition, and analysis. Some SRFs integrate complementary analyt-
ical methods such as magnetic resonance imaging (MRI), electron
paramagnetic resonance (EPR), Fourier-transform ion cyclotron reso-
nance (FT-ICR) mass spectrometry, synchrotron facilities, cryogenic
electron microscopy (cryo-EM), computational modelling, data analysis
software, enabling holistic and multimodal investigations (see Table 1).
Although dozens of SRFs serve the global NMR community, the selected
examples below illustrate diverse operational models, shared practices,
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Table 1

Examples of SRFs include: National (N), International (IN), Collaborative (C),
Industrial (ID), Coordinated Access (CA), Network for Advanced NMR (NAN),
National Research facility (NRF) and Hybrid (HYB) modes. The HYB model
extends access beyond NMR to other magnetic field-based techniques such as
EPR, MRI, and FT-ICR mass spectrometry, while also integrating complementary
capabilities including sample preparation, synchrotron characterization, mi-
croscopy, data analysis software, and modeling. PANACEA (Pan-European solid-
state NMR Infrastructure for Chemistry-Enabling Access) is meta-infrastructure
(MI) that coordinates access, expertise, and development efforts across national
platforms. This federated model enables users to draw on complementary
instrumentation and leading solid-state NMR expertise distributed across mul-
tiple centers, while harmonizing operational and training practices. Detailed
hardware specifications are available on the individual facility websites or the
discussion below. CCP-NC: Collaborative Computational Project for NMR
Crystallography.

Shared research facility Modes of access ~ Complementary
techniques
PANACEA, meta-infrastructure, MI, CA
USA, EU
National High Magnetic Field N, IN, ID, C, EPR, FT-ICR, MRI

Laboratory (NHMFL or
MagLab), Florida, USA

National Magnetic Resonance N, IN, ID, C,
Facility at Madison (NMRFAM), HYB
Wisconsin, WI, USA

HYB, PANACEA

Modeling, Data analysis
software

Campus Chemical Instrument N, IN, ID, C, EPR, FT-ICR, Proteomics,
Center NMR Facility and HYB, NAN Cryo-electron microscopy
National Gateway Ultrahigh
Field NMR Center, Columbus,

OH, USA

Infranalytics, French meta- N, IN, CA, HYB, EPR, FT-ICR
infrastructure PANACEA

The UK high-field solid-state NMR N, IN, ID, C, CA, NMR crystallography
national research facility HYB, PANACEA (CCP-NC)

Government of Canada Ultrahigh- N, IN, ID, C, CA
Field NMR Collaboration
Platform, Canada

Swedish national NMR facility N, IN, ID, C, CA,

(SwedNMR) PANACEA

Centro Risonanze Magnetiche N, IN, ID, C, CA, Synchrotron, Cryo-
(CERM), Firenze, Italy HYB, PANACEA electron microcopy

Spanish National NMR Facilities, N, IN, ID, C, Synchrotron, Cryo-

Barcelona, Madrid, and Bilbao, HYB
INSTRUCT

electron microcopy

Portuguese NMR Centre, N, IN, ID, C, CA,
University of Aveiro, Aveiro, PANACEA
Portugal
Shared NMR facility, PAS-Lodz, N, IN, C, ID Computational modelling ,
Poland X-ray diffraction/
scattering
Core analytical facilities at NYU- N, C, ID, CA Microscopy, Electron
AD, UAE and KAUST, SA diffraction
Multiple SRFs in China N, IN, C, CA, EPR, FT-ICR, MRI
HYB
National Center for Magnetic N, C, IN MRI
Resonance in Wuhan
Multiple SRFs in Russia N, C, ID, HYB EPR, FT-ICR, MRI, X-ray
diffraction/scattering
Multiple NRFs in India N, C, ID, CA
Shared NMR facility, NTU, N, IN, CA
Singapore
RIKEN Yokohama NMR Research N, C, ID, CA
Infrastructure, Kangawa, Japan
Multiple SRFs Australia, New C,ID, CA
Zealand
SRFs in Brazil G, ID, CA
Multiple SRFs in South Africa C,ID, CA
SRFs in Cordoba, Argentina C, ID, CA

opportunities and challenges, guiding principles, and common interests.
The highlighted centers (Fig. 1: ordered geographically from left to
right) are driving interdisciplinary research and innovation in NMR
methodology and instrumentation.

Solid State Nuclear Magnetic Resonance 141 (2026) 102053

Since the early 2000s, the growth of many SRFs—particularly national
facilities has experienced a shift toward high magnetic fields (18.8-35T)
in conjunction with fast MAS (50-160 kHz) probes and custom-built
probes for extreme conditions in order to broaden the scope of solid-
state NMR applications. In addition, more than sixty DNP-NMR spec-
trometers spanning frequencies from 400 MHz/263 GHz to 900 MHz/
593 GHz (some of which are accessible via SRFs) are accelerating
structural studies of challenging solids. At the time of writing this article,
several DNP-enabled NMR facilities are actively supporting the broader
solid-state NMR community including 400 MHz/263 GHz systems
(Fig. 1: geographically from left to right) in: Santa Barbara CA, Ames IA,
Dayton OH, Princeton NJ (U. S. A.); Bruker (U. S. A.); Manchester and
Cambridge (U. K.); Utrecht (Netherlands); Lyon, Grenoble, and Marseille
(France); Bruker (France); Berlin, Rostock, Frankfurt and Darmstadt
(Germany); Gothenburg, (Sweden); Ecole Polytechnique Fédérale de
Lausanne/EPFL and Eidgenossische Technische Hochschule Ziirich/ETH
Zurich (Switzerland); Aveiro (Portugal); Rehovot (Israel); Melbourne
(Australia); Jeddah (Saudi Arabia); Wuhan (China); Kyoto and Tsukuba
(Japan)-with new systems under installation in Virginia (USA); Banga-
lore (India); Shanghai (China). Facilities equipped with 600 MHz/395
GHz DNP systems include San Diego, CA, Tallahassee, FL, New York, NY,
Dallas, TX, Columbus, OH, and Bruker Billerica, MA (U. S. A); Guelph,
ON and Edmonton, AB (Canada); Nottingham (U. K.); Nijmegen
(Netherlands); Gottingen, Aachen, and Jiilich (Germany); ETH Zurich
(Switzerland); Doha (Qatar); Abu Dhabi (U. A. E.); and Beijing (China),
with further systems being acquired in Ames IA (U. S. A.), Hangzhou and
Hefei (China). High-field DNP facilities include 800 MHz/527 GHz
systems in Pacific Northwest National Laboratory/PNNL WS (U. S. A.);
Utrecht (Netherlands); Lyon and Paris (France); Munich, Jiilich and
Berlin (Germany). In addition, EPFL (Switzerland) hosts a 900 MHz/
593 GHz DNP system. Hardware specifications at SRFs may change due
to upgrades including field strengths, consoles, probe types, DNP ca-
pabilities, and maintenance cycles, and the acquisition/replacement of
specialized capabilities. Information on key hardware capabilities at
each SRF alongside indicative output metrics (user numbers, allocated
time, research topics, publication counts and data management plans)
are presented in the discussion sections features by individual SRFs (vide
infra), or directly obtained from the annual reports published in the
dedicated websites of the SFRs. High sensitivity and resolution obtained
in NMR spectra acquired at high fields and/or with DNP NMR capabil-
ities are expected to facilitate rapid data acquisition and analysis,
structural information obtained from which can be further refined
through computational modeling, automation, and data-driven ap-
proaches such as NMR crystallography, structure prediction, and ML
approaches. Therefore, advances in upgrading of the associated hard-
ware from central- (CPU) to graphics processing unit (GPU), exascale
interconnects (hybrid CPU-GPU architectures), GPU-dense nodes, and
liquid-cooled systems, dramatically boost throughput for molecular
modelling, and ML-driven simulations.

2.1. SRFs in Florida, FL, U. S. A. (Robert W. Schurko)

The National High Magnetic Field Laboratory (NHMFL or MagLab,
for short) is an NSF-funded U.S. research facility spanning three in-
stitutions: the Florida State University (FSU in Tallahassee, FL; head-
quarters), University of Florida (UF, Gainesville, FL), and Los Alamos
National Laboratory (LANL, Los Alamos, NM). The MagLab features a
number of world-record magnets and high magnetic fields, and spans
research areas such as physics, chemistry, materials science, engineer-
ing, biology, biochemistry, and medicine. There are seven user pro-
grams: (i) DC field (FSU), which features steady, continuous magnetic
fields up to 45 T [46], including resistive and hybrid magnets; (i)
NMR/MRI (FSU), which has high-field solid-state NMR and MRI/S
(including in vivo animal imaging) and probe development for
solid-state NMR and MRI; (iii) Advanced Magnetic Resonance Imaging
and Spectroscopy (AMRIS, UF), which has high-field solution NMR and
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Fig. 1. Approximate locations of selected shared NMR facilities. Black dots indicate facilities with GHz-class spectrometers, and blue stars represent shared NMR
facilities (300-900 MHz range). Red color ‘4’ symbols represent DNP NMR facilities. For accurate site details and institutional affiliations, please refer to the dis-
cussion in the following sections. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

specialized NMR/MRI for biological and brain studies; (iv) EMR (FSU),
which features high-frequency ESR techniques for studying unpaired
electrons in materials (and working with the NMR/MRI division on DNP
methods); (v) ICR (FT Ion Cyclotron Resonance Mass Spectrometry,
FSU), which offers ultra-high mass resolution and accuracy; (vi) High
B/T (UF), combining magnetic fields (up to ~15 T) with ultra-low
temperatures (~0.4 mK) for quantum fluids/solids research; and (vii)
Pulsed Field Facility (LANL), which uses ultra-high magnetic field pulses
up to ~100 T for short-duration field experiments. The MagLab served
12,625 users from across the U.S. and around the world from 2018 to
2024, with ca. 50 % of these representing students and postdocs. On
average, user counts from universities, government laboratories, and
industry are 1390, 280, and 137, respectively, per annum. At the time of
writing of this article, all user programs are open access with no user
fees, and the only requirement is submission of a brief proposal that is
reviewed by scientific peers.

The NMR/MRI and AMRIS user programs collectively serve ca. 550
users and offer >17,000 magnet days per year, with the majority of
research focusing on chemistry, materials science, biology, and medi-
cine. There are three flagship instruments, including (i) the 36 T series-
connected hybrid (36T-SCH) [47], which is the highest field NMR
magnet in the world (operating at 35.2 T/1.5 GHz for gy NMR); (ii) the
21.1 T/900 MHz ultra-widebore magnet (900 UWB) [48], which is used
for in vivo MRI as well as solid-state NMR of quadrupolar nuclides; and
(iii) the 395 GHz/14.1 T/600 MHz DNP NMR platform [49], which
features a unique quasioptical microwave table that enables simulta-
neous MAS DNP NMR and Overhauser DNP (ODNP) NMR experiments.
There are also 11 other NMR platforms with magnetic fields ranging
from 7.1 T to 20.0 T. The NMR Technology Group in the NMR/MRI user
program specializes in the construction of solid-state NMR probes with
unique capabilities, including unique triple-resonance tuning configu-
rations, low-frequency configurations for unreceptive low-y nuclides,
MAS rates >100 kHz, low-E coils for “lossy” biological samples, and
special designs for GHz-class NMR platforms [50].

The large number of magnet days and high volume of users mandates
that careful consideration be given to the number of support scientists
and technicians, efficient scheduling, and magnet day usage, triaging of
experiments, tracking of research output, and safety concerns. The
NMR/MRI User Program is overseen by a Director, who reports not only

to the Director of the NHFML, but also to External Advisory and User
Committees. Collectively, these partnerships govern future scientific
directions, acquisition of equipment, and support of high-impact
research projects, along with training and recruitment of users and ed-
ucation and mentorship activities for students. Staff scientists (referred
to as Research Faculty or Research Associates at the MagLab), work
directly with users on experiments, training of students, and dissemi-
nation of publications-they also conduct their own independent
research projects that serve to improve the rapidity, efficiency, and
quality of solid-state NMR experiments, which greatly benefits our users
(especially non-experts in NMR). The user support of technical staff is
also crucial, who ensure that all instruments are well-maintained, soft-
ware is up to date, and new hardware and probes are consistently
available-this latter aspect ensures that our users have access to the
most cutting-edge NMR hardware available.

Many options are provided to current and potential users of the
NMR/MRI facilities at the MagLab. For instance, users are offered the
opportunity to work on site (this is especially valuable for students and/
or initiation of projects) or to run their experiments remotely. Research
faculty and technical staff work with directly with users to choose the
most suitable magnets, spectrometers, probes, experiments, and pulse
sequences, all with the goal of achieving meaningful scientific outcomes.
Expert NMR users have the opportunity to work on methodological
development and attend workshops at MagLab (e.g., high-field solid-
state NMR, DNP, and probe/coil workshops), whereas non-experts are
tutored and mentored in the application and interpretation of complex
NMR data sets. With education and training in mind, we have recently
launched the MagLab Summer School on Solid-State NMR Spec-
troscopy-our first full-length offering had 18 student participants from a
variety of different background and educational levels (undergrad to
postdoc) and featured lectures, problem sets, tours, workshops, and
hands-on experimentation. In addition, in partnership with the Pan-
European solid-state NMR Infrastructure for Chemistry-Enabling Ac-
cess (PANACEA, which brings together seven national infrastructures
from Europe and that at the MagLab), a workshop on DNP for European
and American students and postdocs was recently offered at MagLab.
Many of these ideas and access/training models are detailed in the
following sections.
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2.2. SRFs in Madison, WI, U. S. A. (Chad M. Rienstra)

The National Magnetic Resonance Facility at Madison (NMRFAM,
Department of Biochemistry at the University of Wisconsin-Madison) is
a national SRF supported by the National Institutes of Health (NIGMS)
through the P41 Biomedical Technology Research Resource (BTRR) and
R24 National and Regional Resource programs, along with user fees. The
facility provides open access to students, researchers, and principal in-
vestigators, supporting research in biochemistry, structural biology,
chemistry, materials science, software for data analysis, NMR method-
ology, and instrumentation. As a key partner in the Network for
Advanced NMR (NAN), NMRFAM contributes to a nationwide effort to
enhance NMR infrastructure and collaboration. Through this network,
two new 1.1 GHz NMR spectrometers have been made available to the
broader NMR community, one at NMRFAM dedicated to solid-state
NMR, and the other at the Complex Carbohydrate Research Center
(CCRC) configured for solution NMR.

Solid-state NMR capabilities have been substantially augmented at
NMRFAM over the last five years through strategic expansion of high-
field instrumentation and supporting infrastructure. Recent expansions
include additions of several magnets (two 600 MHz, two 750 MHz, 900
MHz, and 1.1 GHz) with solid-state capabilities and a suite of probes
with custom features. The 1.1 GHz and 900 MHz instruments are
equipped with Bruker NEO consoles and feature an advanced suite of
probes including BlackFox 1.6 mm HCN/HPC for biological samples,
Phoenix 1.2 mm and 1.6 mm HFXY for fast MAS applications, Phoenix
3.2 mm for low-gamma nuclei, and Bruker 0.7 mm HCN for ultrafast
MAS. A custom-developed lock system for the 1.1 GHz spectrometer
significantly enhances spectral resolution at ultra-high fields [51].
Probes for the 900 MHz system are compatible with the 1.1 GHz system,
including BlackFox low-E field probes in 1.6 mm and 2.5 mm formats
optimized for biological NMR applications. Moderate field instrumen-
tation includes a 750 MHz wide spectrometer and three 600 MHz in-
struments dedicated to solids that provide additional capacity and serve
as platforms for method development, staging and sample evaluation.

The facility maintains comprehensive rotor coverage from 0.7 mm to
5.0 mm, including 1.2 mm, 1.6 mm, 2.5 mm, and 3.2 mm sizes, opti-
mized for different experimental requirements. All instruments
emphasize compatibility with legacy Varian equipment, currently sup-
ported by PhoenixNMR and Resynant, ensuring continuity for estab-
lished experimental protocols. The instrument suite enables detection of
a broad range of nuclei including H, 3¢, 15N, 1°F, 3P, and quadrupolar
species, supporting advanced multidimensional NMR experiments
across magnetic fields ranging from 600 MHz to 1.1 GHz. Technical
innovations include advanced amplifier compensation systems [52],
automated optimization software [53] and shimming protocols [54]
that deliver improved homogeneity and spectral resolution. Compre-
hensive sensitivity studies across the magnetic field range have been
conducted, providing quantitative performance metrics and optimiza-
tion guidelines for experimental design [55]. Photoillumination probes
enable control of pH within the rotor during solids measurements [56].

By integrating state-of-the-art instrumentation, automated data
acquisition systems, advanced analysis software, and collaborative
expertise, NMRFAM plays an important role in driving methodological
innovation and expanding the scientific reach of solid-state NMR spec-
troscopy. The facility provides comprehensive user support including
training programs, collaborative assistance in experimental design, data
acquisition optimization, and analysis consultation. All instruments are
accessible to the user community through the Network for Advanced
NMR (NAN) and the NMRFAM website, supporting both local and
external users from academic and industrial sectors.

2.3. SRFs in Columbus, OH, U. S. A. (Christopher P. Jaroniec, Alexandar
L. Hansen, W. Trent Franks)

The solid-state NMR facilities at The Ohio State University (OSU,
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Columbus, OH) are comprised of the Campus Chemical Instrument
Center (CCIC) NMR Facility and the National Gateway Ultrahigh Field
NMR Center with the first Bruker 1.2 GHz NMR spectrometer in the US,
supported by a recent mid-scale research infrastructure award from the
National Science Foundation, as its centerpiece. In addition to the ul-
trahigh field 1.2 GHz instrument, which has solid-state and solution
NMR capabilities, the CCIC NMR facility staff operate and maintain an
additional eight moderate-to-high field Bruker high-resolution NMR
instruments including an 800 MHz solid-state NMR spectrometer ob-
tained through a National Institutes of Health High End Instrumentation
award, a 600 MHz/395 GHz DNP solid-state NMR spectrometer, a 800
MHz spectrometer with solids, solution and micro-imaging capabilities,
as well as two 600 MHz, 700 MHz, 800 MHz and 850 MHz solution NMR
spectrometers, most of which are equipped with cryoprobes. The solid-
state NMR spectrometers are described in additional detail below, and
collectively this comprehensive suite of state-of-the-art NMR in-
struments is available for use by academic researchers and industrial
partners across the nation in diverse disciplines such as structural
biology, materials science, and metabolomics [22,57-65].

The 1.2 GHz Bruker Avance Neo NMR spectrometer is equipped with
a set of probes to support a wide range of scientific applications. For
solid-state NMR research on materials this system offers a 3.2 mm HX
probe for low-gamma nuclei (**’Au to 13C; 20-300 MHz) and a 1.9 mm
HX probe for high-gamma nuclei (13C to 3!P; 300-484 MHz). The facility
also offers premier fast- and ultra-fast MAS capabilities for biological
samples with 1.3 mm and 0.7 mm HCN probes with MAS rates of up to
67 kHz and 111 kHz, respectively, which are ideal for advanced studies
employing proton detection for enhanced sensitivity. The Bruker Avance
III HD Ascend 600 MHz wide-bore NMR DNP solid-state NMR spec-
trometer is equipped with a 395 GHz gyrotron and a low-temperature
MAS cabinet. The system offers several DNP and room-temperature
probes for studying biological solids, powders, and micro-crystalline
samples, including 3.2 mm HCN and HX low-temperature MAS probes
for experiments carried out at 100 K as well as a 1.3 mm HCN room
temperature probe. The Bruker Avance III HD Aeon 800 MHz wide-bore
solid-state NMR spectrometer comes with an extensive collection of
advanced probes, including 1.3 mm and 0.7 mm MAS probes capable of
spinning speeds up to 67 kHz and 111 kHz, respectively, as well as 3.2
mm HXY and Efree HCN probes. A multi-purpose Bruker Avance Neo
Ascend 800 MHz NMR instrument is equipped with a 4.0 mm gradient
HR-MAS probe ideal for studies of biological solids such as membrane
proteins and tissue samples, and can also accommodate the 0.7 mm, 1.3
mm and 3.2 mm Efree HCN probes.

While the facilities at Ohio State have a strong focus on solid-state
NMR, they are also home to a world-class suite of instruments for
solution-state NMR and are integrated with a comprehensive mass
spectrometry core. For solution-state NMR studies, the 1.2 GHz spec-
trometer is equipped with a 3 mm TCI (HCN) Cryoprobe, which is ideally
suited for resolution-limited studies of large proteins, nucleic acids, and
complex mixtures found in metabolomics. To support high-throughput
studies, the system is also equipped with a Chilled SampleCase for
storing and automatically loading up to 24 samples at controlled tem-
peratures and an Automated Tuning & Matching (ATM) module for
streamlined operation. This is complemented by an 850 MHz NMR with
a TCI cryoprobe and a 24-sample SampleCase for high-throughput bio-
logical studies, as well as a 700 MHz NMR with a TXO cryoprobe and a
510-sample SampleJet. The 700 MHz instrument offers the highest 13C-
detection sensitivity of all the solution instruments, providing unique
capabilities for studying intrinsically disordered proteins (IDPs), natural
products, and polysaccharides. The broader CCIC also includes a Mass
Spectrometry and Proteomics (MSP) facility, which houses ten in-
struments and offers 26 distinct service options. This allows users access
to complementary techniques such as Fourier Transform Ion Cyclotron
Resonance (FT-ICR) mass spectrometry and targeted compound quan-
tification, creating a hybrid environment for multifaceted materials and
biomolecular characterization.
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The NMR facilities at OSU support a large and diverse user base
consisting of OSU internal users as well as users from external academic
institutions, government and non-profit organizations, and industrial
partners. Access is provided to both NMR experts and non-experts, with
facility staff offering expert training, consultation on experimental
design, data collection, and analysis to ensure users can achieve mean-
ingful scientific outcomes. In the fiscal year 2025 alone, the CCIC NMR
facility and National Gateway Ultrahigh Field NMR Center served over
200 users representing 25 institutions, and supported external research
grants in funding resulting in over 30 publications.

2.4. SRFs in Canada (David L. Bryce, Andreas Brinkmann, Victor
Terskikh)

The Government of Canada Ultrahigh-Field NMR Collaboration
Platform is operated by the National Research Council Canada with
support from Laboratories Canada, and a consortium of other Canadian
Government Departments and Universities. Located in Ottawa, the
centerpiece of the facility is a Bruker 900 MHz (21.1 T) instrument
equipped with a wide array of commercial and custom-built solution-
state and solid-state solenoid and magic-angle-spinning (MAS) probes,
in particular for low-gamma and quadrupolar nuclei. Since its inception
in 2005/06 as the National Ultrahigh-Field NMR Facility for Solids, this
facility has received support from the Canada Foundation for Innova-
tion, the Natural Sciences and Engineering Research Council of Canada,
the National Research Council Canada, Laboratories Canada, the Uni-
versity of Ottawa, Bruker Biospin, and several other partners. Since its
inauguration the facility has hosted visitors and collected experimental
data for users in academia, government, and industry from across Can-
ada and worldwide. In 2020, the spectrometer has been significantly
upgraded and is now configured to alternate between solution- and
solid-state NMR and features a recently acquired liquids cryoprobe for
increased sensitivity. Access is provided through partnership agree-
ments and on a per-use cost-recovery basis. As of 2025, well over 330
peer-reviewed publications have relied upon results obtained using the
900 MHz instrument. See, for example, refs [66-76].

In addition to this national platform, several universities in Canada
operate local and regional NMR Core Facilities which are open to users
and/or sample submission for a fee. Examples include the NMR center at
the University of Alberta, the NMR Core Facility at the University of
Ottawa, and Dalhousie University’s Nuclear Magnetic Resonance
Research Resource. In addition, 600 MHz,/395 GHz DNP NMR facilities
are available at University of Guelph, Guelph, and University of Alberta,
Edmonton. There are currently no GHz-class magnets available for solid-
state NMR in Canada.

2.5. SRFs in Warwick, U. K. (Steven P. Brown, Dinu Iuga)

The Engineering and Physical Sciences Research Council (EPSRC)-
and Biotechnology and Biological Sciences Research Council (BBSRC)-
funded UK high-field solid-state NMR national research facility (NRF)
hosted at the University of Warwick has been providing access to re-
searchers since 2010, initially at magnetic field of 850 MHz, expanding
to include 1 GHz in 2020 and 1.2 GHz in 2025. The facility has been
contributing to the UK’s fundamental and applied research in academia
and industry. The access model, which supports external (within the UK)
users, fosters collaboration across disciplines and institutions. By
combining cutting-edge technology with other areas of research such as
the calculation of NMR parameters using NMR crystallography methods
(benefitting from funding by EPSRC since 2010 for the collaborative
computational project in NMR crystallography, CCP-NC), the NRF is
uniquely positioned to enable cutting-edge research across materials,
physical and life science applications, including batteries, catalysts,
energy materials, pharmaceuticals, plant cell walls and protein in-
teractions. The access range and impacts of the work carried out at the
NRF are illustrated by a few representative examples in the areas
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biological assemblies [77,78], pharmaceuticals [79,80], hydrogels [81],
biomass characterization [82,83], metal organic frameworks [84,85],
inorganic and hybrid materials [86-89], and NMR methodology [90,
91]. In this way, the NRF not only accelerates scientific discovery but
also strengthens the UK’s position in advanced characterization via
shared NMR facilities. In addition, the Warwick NMR facility enables
access to international users through the Pan-European NMR network
(PANACEA, see below) facilitated by the EU. In the last 5 years
(2020-2024), the UK high field NMR facility served over 400 re-
searchers including PhD students, postdoctoral researchers, principal
investigators, and industrial collaborators, yielding to over 100 publi-
cations. The NRF operates 24/7, 365 days a year, with all time
(excluding a small amount of maintenance days and facility manager
time) allocated to the user community.

2.6. SRFs in Europe

Several NMR-based SRFs across Europe offer access through both
locally managed centers and the broader Pan-European NMR infra-
structure: Germany, Switzerland, the Netherlands, France, Italy, and
Spain have developed SRFs accessible to the national users and the EU
users, some of which are presented in the below sections. In a separate
article published as part of this special issue, Pan-European solid-state
NMR Infrastructure for Chemistry-Enabling Access (PANACEA) project
more elaboratively features the collaborative effort between these SFRs.

2.7. Multiple SRFs in France (Carine van Heijenoort, Franck Fayon,
Sylvain Bertaina, Carlos Alfonso)

In France, the national research infrastructure “Infranalytics”,
established in 2022 and led by the CNRS Chemistry Department, unites
three major user facilities: NMR (solid- and solution-state, and imaging),
EPR (spectroscopy and imaging), and high-resolution FT-ICR mass
spectrometry, all operating at very high magnetic fields. This decen-
tralized national SRF provides access to cutting-edge magnetic field-
based analytical techniques through a network of thirteen sites across
France, housing 23 high-field instruments: 9 NMR spectrometers (up to
28.2 T, 1H = 1200 MHz), 8 EPR spectrometers (up to 9.4 T, 263 GHz),
and 6 FT-ICR systems (up to 18.0 T). Operated by internationally
recognized research teams with their expertise in various fields, these
platforms deliver complementary insights into chemical composition,
molecular organization, and dynamics across diverse samples. Specif-
ically, NMR applications span healthcare, biological samples, environ-
mental science, energy, catalysis, advanced materials, and agri-food
innovation [22,92-102]. The Infranalytics SRF is open to national and
international users, providing approximately 900 days of access per year
for NMR, 480 days per year for ESR/EPR, and 420 days per year for
FT-ICR measurements, over the range of available instruments. Beyond
providing access, the Infranalytics SRF also coordinates national-level
investments in advanced instrumentation. Interdisciplinary in nature,
it serves the scientific needs of users who cannot independently acquire
such sophisticated tools, ensuring access to world-class analytical ca-
pabilities. This coordinated framework enhances both the quality and
efficiency of access by (i) directing users to the most suitable platform
based on expert-reviewed project evaluations, (ii) strengthening
complementarity among partner facilities to optimize resources and
plan future equipment, (iii) harmonizing user training programmes, and
(iv) coordinating investments in ultra-high-field technologies to extend
access for French and international research teams, including those
using standard magnetic fields.

Infranalytics experimental NMR facility (previously known as I’in-
frastructure de Recherche Résonance Magnétique Nucléaire a Tres Haut
Champ, IR-RMN-THC) today brings together a 1.2 GHz (Lille) and a 1
GHz (Lyon) spectrometer both equipped for solution, or solid-state ap-
plications with unique ultra-fast MAS capabilities at 1 GHz, two 950
MHz (Gif-sur Yvette, Grenoble), and one 900 MHz (Lille) for
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biomolecule and biosolid applications with in situ high pressure or
sample illumination capabilities at 950 MHz, one 850 MHz (Orléans) for
solid-state NMR with unique high-temperature facilities, and two MAS
DNP NMR 800 MHz systems (Paris, and Lyon) with polarizers for DNP-
dissolution. A new 1 GHz spectrometer with solution and MAS cryo-
probes (Bordeaux, 2026) is envisaged to join the range of facilities. Each
spectrometer offers 100 days of access per year, with an exception to 1.2
GHz spectrometer, which is open to users 200 days per year. Over the
last five years, Infranalytics’ ultra-high-field NMR facility has provided
users with more than 4890 experiment days, corresponding to the
completion of 481 scientific projects (more than 96 projects and 980
experiment days per year on average). Across all research areas, this
results in over 100 publications each year from users and affiliated
research teams, spanning disciplines such as chemistry, biology, mate-
rials science, environmental science, and earth sciences.

2.8. Multiple SRFs in Sweden (Goran Karlsson, Gerhard Grobner)

SwedNMR is a national and nation-wide research infrastructure that
provides access to advanced NMR instrumentation and expert support
across all areas of NMR spectroscopy in Sweden. SwedNMR supports a
diverse range of applications from the atomic-level characterization of
organic and pharmaceutical compounds, proteins, RNA, and DNA to
studies of batteries, solar cells, and clinical samples [103-112]. The
infrastructure operates through a distributed, node-based model orga-
nized into three thematic modules: bioNMR, materials NMR, and
translational NMR. SwedNMR is supported by the Swedish Research
Council and involves the following participating NMR partners: Uni-
versity of Gothenburg, Chalmers University of Technology, Lund Uni-
versity, Linkoping University, Royal Institute of Technology (KTH),
Stockholm University, Swedish University of Agricultural Sciences
(SLU), Umed University, and Uppsala University. The infrastructure
includes three access nodes located in Gothenburg, Stockholm, and
Umed, providing researchers with on-site and remote access to
high-field NMR systems, while five expert nodes offer technical
consultation, methodological development, and wuser training.
SwedNMR is open to users from all scientific backgrounds and levels of
expertise, from academic groups and industrial partners to early-career
researchers and students, thus promoting widespread adoption of NMR
across disciplines. The main solid-state NMR centre is located in Umea,
together with the smaller Stockholm and Gothenburg nodes offers access
to solid-state including cryo-MAS and DNP-NMR capabilities. Together,
these sites offer broad access to advanced solid-state NMR, including
cryogenic MAS and DNP-NMR. The flagship instrument is the 850 MHz
solid-state NMR spectrometer in Ume8, equipped with a 0.7 mm HXY
MAS probe, alongside a 600 MHz system featuring a 3.2 mm Cryo-MAS
probe. Additional instrumentation includes an 800 MHz spectrometer
with a 1.3 mm MAS probe (expected in 2026) and a 600 MHz HX MAS
system in Stockholm, as well as 400 MHz systems with 3.2 mm HXY and
HFX DNP capabilities in Gothenburg. Between 2022 and 2024, these
facilities collectively supported 205 users across approximately 3600
access days. On average, SwedNMR annually serves 150 external users
from Sweden, supporting 30 research projects per year. During
2020-2024, this usage has led to over 209 peer-reviewed publications
and dissemination activities across a wide range of disciplines, including
biomacromolecular research (40 % usage), catalysis and advanced ma-
terials (30-40 % usage), cellulose-based biopolymers, and pharmaceu-
tical and other applications (20-30 % usage).

2.9. SRF in £6dz, Poland (Marek J. Potrzebowski)

The NMR Laboratory at the Centre of Molecular and Macromolecular
Studies, Polish Academy of Sciences (CMMS PAS, £.6dz) serves as a
central hub, among others, for solid-state NMR spectroscopy in Poland.
Funded through research grants from the National Science Centre
(NCN), internal resources and industrial contracts, the laboratory
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supports around 30 domestic users annually (2020-2025) and engages
in scientific collaborations with several European countries including
the Czech Republic, Croatia, France, and Portugal, as well as collabo-
rative effort with research labs in the United States. The SRF at £.6dz is
equipped with four solid-state NMR spectrometers with fields ranging
from 9.4 T to 14.1 T (AVANCE Neo 400, AVANCE III WB 400, AVANCE
III 500, and AVANCE III 600), along with a diverse set of probeheads
supporting rotor diameters from 4 mm to 1.3 mm, with dual-channel
broadband and triple-resonance dedicated probes, enabling analysis of
several NMR active nuclei crucial for studying biological samples,
pharmaceuticals, organic and organic-inorganic hybrid materials. The
NMR Center in £.6dz offers tailored support for research projects ranging
from routine analysis of powders with basic 13C CP-MAS to high-
resolution 2D correlation NMR experiments for spectral analysis in
conjunction with advanced NMR crystallography, and solid-state NMR
methods development [113-124]. For projects beyond the SRF’s capa-
bilities, researchers from Poland are encouraged to apply for access
through the PANACEA network. Encouraged by the success of the local
capability and international collaboration, Poland is currently working
toward forming a national NMR infrastructure, obtained a favorable
evaluation, making a step towards investments in the Polish Roadmap
for a shared NMR Research Infrastructure.

2.10. SRF in Florence, Italy (Linda Cerofolini, Enrico Ravera, Marco
Fragai, Moreno Lelli)

Italy’s Magnetic Resonance Center (CERM-Centro Risonanza Mag-
netica) at the University of Florence provides access to 13 NMR spec-
trometers (9.4-28.2 T, 400-1200 MHz), spanning solution- and solid-
state applications in structural biology, drug-protein interactions,
catalysis, pharmaceuticals, and materials. Of these instruments, the 1.2
GHz, 850, 800, and 700 MHz, are equipped with solid-state NMR probes
and a 600 MHz instrument is equipped with an HR-MAS probe. Access is
offered through three routes: Instruct-ERIC (transnational, EU including
supported Italian users), Instruct-ITALIA (national structural biology
network, started its activity in early 2020), and PANACEA (2021 on-
wards, global solid-state NMR for chemistry, pharma, and materials). At
the national level, CERM has been providing access to state-of-the-art
NMR instrumentation since 1990 and transnational access since 1994,
overall, with more than 30 years of experience in hosting users. Since
2010, CERM together with its associated Consortium for the Magnetic
Resonance of Metalloproteins (CIRMMP) is also included in the “Italian
Roadmap of Research Infrastructures of Pan-European Interest”. CERM
is also the Italian node of the European Instruct-ERIC, the European
research infrastructure consortium for integrated structural biology
defined in the European Strategy Forum on Research Infrastructures
(ESFRI) Roadmap and active since 2012. CERM is contributing to the
Instruct-ITALIA infrastructure with its NMR or the EPR instrumentation,
complementing facilities offering platforms and techniques which
include 3D structural methods such as X-Ray crystallography and cryo-
EM, Circular Dichroism, and other biophysical platforms. In parallel,
CERM/CIRMMP is also the core centre of the Instruct-ITALIA network,
an infrastructure to promote and foster an integrated approach in
structural biology at the national level.

Regarding solid-state NMR, CERM offers probes ranging from 4 mm
to 0.7 mm HCN (MAS speed up to 111 kHz) to support a wide range of
scientific applications. The 1.2 GHz Bruker Avance Neo NMR spec-
trometer with 0.7mm probe is particularly suited for advanced studies
employing proton detection with enhanced sensitivity and resolution
without the need for deuteration, and enabling detailed investigations of
dynamics and interactions in the solid state. The Bruker Avance III 850
MHz wide-bore system with 3.2 mm CP MAS DVT '*N/!3C/'H, 1.3 mm
CP MAS 'H'°F/BB/'°N and 0.7 mm CP MAS 'H/'3C/!°N probe-heads for
biomolecular applications. The Bruker Avance III 800 MHz standard-
bore system with 3.2 mm CP MAS DVT E-free 1°N/*3C/!H, 1.3 mm 3y
'H'°F/BB-X/BB-Y and 1.3 mm CP MAS H/!3C/!>N probes allow to
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perform measurements on inorganic materials and biomaterials with
high salt concentrations. The Bruker Avance NEO 700 MHz systems
come with two CP MAS BB/BB/1H probe-heads (4- and 3.2 mm) which
allow to record also solid-state NMR spectra on 2’Al and 'B nuclei.

Specifically, the CERM/CIRMMP infrastructure provides state-of-
the-art instrumentation and expertise to perform the most comprehen-
sive array of experiments needed for the structural and dynamic char-
acterization of biological macromolecules and their complexes, with
well-known expertise in structural determination of protein, para-
magnetic proteins (CERM contributed to the identification of structure
of a paramagnetic metalloprotein (MMP12) uniquely through solid-state
NMR restraints [125] and protein amyloids) [126,127], antibiotics
[128,129], biomaterials [130], material sciences [131,132] and
DNP-enhanced NMR [99,133-135] are also active fields of research. The
research at CERM is devoted to integrated approaches, and not only in
structural biology. CERM facilities are also enabled with other comple-
mentary techniques that are also included in the user access possibilities,
such as EPR, protein production for in-cell NMR, computational ser-
vices, and proprietary infrastructure dedicated to industrial research
providing access to instrumentation and expertise. A Cryo-EM instru-
ment and an X-ray diffraction platform are available at the facility
jointly with the Chemical Department. Together, these facilities sup-
ported 205 users over approximately 3600 access days, resulting in more
than 209 peer-reviewed publications and dissemination outputs. Spe-
cifically, for solid-state NMR, during the last 5 years (2020-2024) 42
users accessed the facility with more than 560 access days distributed in
the areas of biomacromolecular and cellular systems, advanced mate-
rials, and pharmaceutical sciences. These contributions reflect diverse
domains including biomacromolecular systems, advanced functional
materials, cellulose-based biopolymers, and pharmaceutical sciences as
well solid-state NMR and DNP-NMR methodology, demonstrating broad
interdisciplinary impact.

2.11. SRF in Aveiro, Portugal (Luis Mafra)

The Portuguese NMR Centre, established in 2023-2024 at the Uni-
versity of Aveiro, is Portugal’s largest NMR facility. It houses six spec-
trometers, including a 700 MHz Bruker Avance III HD for high-
resolution studies of biomaterials and polymers, a 400 MHz Bruker
Avance Neo DNP-NMR with cryogenic MAS probe, and four mid-field
systems (300, 400, and two 500 MHz), and operates within both the
national PTNMR network and the Pan-European PANACEA network.
Managed by 10 permanent researchers, two technical staff, and several
PhD students, the Centre benefits from funding from CICECO (Centre for
Research in Ceramics and Composite Materials)-Aveiro Institute of
Materials, which fosters strong interdisciplinary research. Operating
through PANACEA’s peer-review system (see below - PANACEA proj-
ect), the Centre serves approximately 32 local users annually, support-
ing both academia and industry (e.g., Hovione, Bondalti). Services
include a wide range of multinuclear 1D/2D MAS NMR methods. The
research at this SRF also involving developing novel MAS-DNP meth-
odologies to polarize gases in confined spaces and exploring additive
manufacturing (3D printing) to produce custom NMR components
[136]. The Centre has been a hub for methodological innovation, with
expertise in developing advanced solid-state NMR techniques. Key
contributions include enhancing the sensitivity and resolution for
challenging quadrupolar nuclei using methods such as
multiple-quantum (MQ) and satellite-transition (ST) MAS, and devel-
oping high-resolution 'H-based combined rotation and multiple-pulse
spectroscopy (CRAMPS) approaches at fast MAS, combined with
'H-inverse detection and 'H-'H double-quantum-single-quantum
(DQ-SQ) recoupling. Experimental capabilities are complemented by
computational approaches, including first-principles calculations and ab
initio molecular dynamics. Research spans materials science and
biophysics, supported by National (FCT) and European Research
Council (ERC) grants. Applications include atomic-scale studies of CO5
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chemisorption and physisorption in nanoporous materials such as
metal-organic frameworks (MOFs), covalent-organic frameworks
(COFs), and amine-functionalized silicas (using DNP-enhanced 13¢/15N
NMR); investigations of battery electrolytes, in situ photo-
electrochemical NMR, drug delivery systems, and pharmaceuticals,
bioadhesives, biomass, studies of energy materials, glasses, heteroge-
neous catalyst acidity (e.g., slp probe molecules in zeolites); and lumi-
nescent nanothermometry [137-147]. Specifically, the biophysical
research addresses protein-lipid interactions in membrane dynamics,
integrated with complementary methods, while machine learning with
neural network potentials is applied to model gas interactions and re-
actions under confinement.

2.12. Coordinated access between SRFs in EU and in U. S. A. (Anne
Lesage, Guido Pintacuda)

The PANACEA project is a European distributed infrastructure
designed to facilitate access to advanced solid-state NMR instrumenta-
tion for the broader chemistry community. Funded by the EU Horizon
2020 INFRAIA-02-2020 (Integrating Activities for Starting Communities),
PANACEA has been operating since 2021, and brings together eight
NMR-based SFRs operating as national infrastructures across Europe as
well as a strategic partnership with the US-based National High-
Magnetic Field Laboratory [148]. It includes the High-Field NMR Cen-
ter in Lyon (CRMN, France), the Extreme Condition and Materials: High
Temperature and Irradiation Laboratory in Orléans (CEHMTI, France),
the High-Field Solid-State NMR National Research Facility (NRF) in
Warwick (UK), the Danish Center for Ultrahigh-Field NMR Spectroscopy
in Aarhus (Denmark), the Magnetic Resonance Center in Florence
(CERM/CIRMMP, Italy), the Solid-State NMR Facility for Advanced
Materials Science in Radboud (the Netherlands), the Aveiro Institute of
Materials, in Aveiro (CICECO, Portugal), and the Swedish NMR Centre in
Gothenburg (Sweden).

Unlike the above-mentioned centralized facilities, PANACEA acts as
a meta-infrastructure, coordinating access, expertise, and development
efforts across national platforms. This federated model allows users to
benefit from complementary instrumentation and forefront expertise in
solid-state NMR spread across multiple centers, while aligning opera-
tional and training practices. The consortium currently offers access to
30 NMR spectrometers (with proton frequencies ranging from 100 to
1500 MHz), fully equipped for the most advanced solid-state NMR ap-
plications, including 6 DNP systems, enabling a wide range of applica-
tions from pharmaceuticals and biomolecular systems to fine chemicals,
cosmetics, food, materials, fuel, polymers, and clean energy tries [148].
As of mid-2025, more than 200 projects have been supported through
over 1100 trans-national access days, with an average project length of
5-6 days. The user activities represent between 10 and 17% of the
available time at each participating infrastructure, preserving capacities
for national users and local in-house research programs. To support this
transnational access, PANACEA has implemented common user in-
terfaces, streamlined proposal review processes, and provided training
resources to assist non-expert users in adopting solid-state NMR tech-
niques. Beyond access, PANACEA promotes methodological and tech-
nological innovation through joint research activities involving four key
partners: Bruker Biospin, Mestrelab, Weizmann Institute of Science, and
Ecole Polytechnique Fédérale de Lausanne (EPFL). These collaborations
have enhanced instrument performances, software usability, and
analytical workflows, impacting areas as probe technology, remote ac-
cess tools, metadata standards, and NMR crystallography. In turn, these
joint research activities improve the quality of the trans-national access
to the infrastructures for the users. By leveraging and connecting na-
tional capabilities, PANACEA exemplifies a next-generation model of
infrastructure coordination, serving as a backbone for European
solid-state NMR while fostering global partnerships and enhancing the
reach, efficiency, and impact of shared scientific resources.
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2.13. SRFs in Barcelona, Madrid, and Bilbao, Spain (Miquel Pons)

Spain’s high-field NMR centers are organized as a distributed na-
tional research infrastructure under the Infraestructura Cientifico-
Técnica Singular (ICTS) program, with three service nodes located in
Barcelona, Madrid, and Bilbao. These centers provide competitive access
to researchers through evaluation by an independent external commit-
tee. The facilities feature NMR spectrometers in the 18.8 T-23.5 T (800
MHz-1 GHz) range. The GHz instruments in Barcelona and Bilbao
employ high-temperature superconducting magnets, eliminating the
need for liquid helium cooling below 2 K. Each service node offers
distinct expertise to the users: the Barcelona center focuses on intrinsi-
cally disordered proteins and pharmaceutical biologics; the Madrid node
is advancing biosolids NMR with a MAS cryoprobe and is soon to install
a fast MAS probe on its 800 MHz instrument; and the Bilbao node has
strengths in glycobiology and metabolomics [26,149-156]. All three
centers are actively involved in integrative structural biology efforts, in
close collaboration with complementary large-scale facilities such as the
ALBA synchrotron located within 30 km proximity to the Barcelona
node, and cryo-EM hubs co-located near each NMR site. The three high
field NMR centers are now part of INSTRUCT ERIC (pan-European
research infrastructure in structural biology) following a major expan-
sion of the Spanish center to enhance international access and foster
collaborative research across multidisciplinary platforms.

2.14. SRF in Sao Paulo, Brazil (José Fabian Schneider)

In Brazil, the NMR-Lab of Sao Carlos Institute of Physics, University
of Sao Paulo hosts a multiuser solid-state NMR facility, which was
established in 2021 with funding from the Sao Paulo State Foundation
for Research Support (FAPESP). A Bruker Avance Neo 400 MHz wide-
bore spectrometer is among the heavily used instruments for external
users. The facility is overseen by administrative and users committees.
This spectrometer is equipped with multiple probes (1.3 mm HX, 2.5 mm
HXY, 3.2 mm XY low gamma, 4 mm H/FXY, 5 mm HX, and 7 mm HX)
and capable of spinning speeds up to 60 kHz. Additional resources
include a Bruker 600 MHz, a Varian 300 MHz, and an Agilent 250 MHz
system. Instruments operate year-round on a 24/7 basis, with ~ 5% time
dedicated to maintenance. Several modes of access and services are
provided: reduced fees for researchers supported by federal or state
grants, free of charge on a collaborative basis with NMR-Lab staff, or by
paid packages for industry. Technical and academic staff assist users,
many of them non-NMR specialists, in selecting experiments and
ensuring high-quality data. In the past four years, over 50 users accessed
the facility. Research areas include materials science (40%), physical
chemistry (30%), structural chemistry (10%), and environmental
chemistry (20%). Research projects and samples include ceramics,
glasses, biomaterials, nanoparticles, concretes, polymers, small mole-
cules, and hybrid materials [157-162].

2.15. SRF in Cordoba, Argentina (Gustavo Monti, Rodolfo Acosta,
Horacio Pastawski)

In Argentina, the National Laboratory for Research and Services in
Solid-State Nuclear Magnetic Resonance (LANAIS-RMS) was established
at the National University of Cérdoba in 1990 as part of Argentina’s
network of open national facilities for research and services. The labo-
ratory is centered on a Bruker AVANCE NEO 300 WB spectrometer
equipped with various probes, including 4 mm CP/MAS, wide-line
proton and X-nuclei, as well as diffusion and micro-imaging options.
Research activities encompass quantum phenomena, pharmaceuticals,
polymers, porous media for petrophysics, battery electrodes, and pulse
sequence development [163-171]. Complementary resources include
low-field solid-state NMR at 20 MHz (Bruker Minispec mq20) and 60
MHz (custom-built with a Magritek KEA console), single-sided NMR
(Magritek profile MOUSE PM25/PM5), and a Magritek Spinsolve80
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Ultra Multi X for solution-state NMR. LANAIS-RMS provides extensive
services in materials characterization, with emphasis on catalysis and
food polymers. More than 120 researchers from Argentina, Brazil, the U.
S. A., and Europe have collaborated at the facility, which also serves 13
private companies (including pharmaceutical and oil industries) and 41
academic laboratories. Access is offered through collaborative projects
or paid services, supported by the National University of Cérdoba and
national research grants. Services include training, experiment design,
data acquisition, analysis, and simulations.

2.16. Multiple SRFs in Russia (Yury G. Kolyagin)

Multiple sites in Russia host NMR-based SRFs including Lomonosov
Moscow State University, St. Petersburg State University, Kazan Federal
University, Novosibirsk State University, and the Russian Academy of
Sciences institutes. These SRFs provide open access to solid-state NMR
facilities to researchers through collaborative arrangements. These fa-
cilities are equipped with multinuclear solid-state probes, MAS capa-
bilities, and advanced pulse sequence libraries, enabling studies of both
crystalline and amorphous solids. Applications of solid-state NMR in
Russia are diverse, ranging from fundamental investigations of mineral
structures, catalysts, and porous materials to studies of polymers,
pharmaceuticals, and biomolecular assemblies. Particular emphasis has
been placed on porous materials, as well as heterogeneous catalysts and
clays of geological interest. Shared access models allow researchers from
smaller institutions to benefit from advanced NMR infrastructure.
Recent studies include NMR studies of metal-organic polyhedral
frameworks [172-174], NMR crystallography of salts and zeolite ma-
terials [175-177], and methodological advances in solid-state NMR of
quadrupolar nuclei such as Sy, 93Nb, and **Mo [177,178]. Notably,
research groups are developing in-situ and operando solid-state NMR
approaches, often combined with MAS under batch or flow conditions,
to investigate heterogeneous catalysts [179-182] and/or hydrothermal
synthesis [182]. Beyond enabling access to SRFs, these facilities act as
training hubs, offering workshops and technical support that broaden
expertise in solid-state NMR across the community. Annually, an esti-
mated 30-50 users access these facilities, contributing to the publication
of over 200 papers between 2015 and 2024. By fostering collaboration
and efficient use of resources, Russia’s shared NMR facilities play a vital
role in multidisciplinary innovation at the national level, and knowledge
exchange.

2.17. SRFs in Abu Dhabi, U. A. E., and Jeddah, S. A. (Brijith Thomas)

In the Gulf, Middle-East and North Africa regions (broader MENA),
the NMR infrastructure is booming and facilitating access to users from
different research areas. Regionally, a high-field solid-state NMR facility
in Saudi Arabia supports access to 14 instruments with magnetic fields
up to 21 T (*H = 900 MHz), including variable-temperature capabilities
and a 400 MHz DNP-NMR system. At the King Abdullah University of
Science and Technology (KAUST), researchers access instrumentation at
core facilities via a Request for Service (RFS) platform and receive in-
dependent training, facilitating research in wider chemistry areas such
as porous materials and membranes, for example [183,184]. The facility
supports approximately 150 users, of whom about 10% are external,
including industrial partners such as SABIC and ARAMCO. The KAUST
maintains active collaborations with universities across Saudi Arabia
and frequently hosts external researchers and industrial partners for
training activities and instrument access. In addition, the shared core
NMR platform at New York University Abu Dhabi (NYU-AD) houses four
moderate field NMR spectrometers (11.7 T-14.1 T or 500-600 MHz)
with solution and solid-state 600 MHz and a 600 MHz DNP NMR in-
strument, supporting about 10 internal users and external collaborations
with academic institutions and industry partners. Operated by the Core
Technology Platform (CTP) at NYU-AD, the primary research focus in-
cludes solid-state NMR studies of supramolecular assemblies, organic
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crystals, MOFs and COFs, catalysts, membranes, polymers related ma-
terials, dynamic and self-healing crystals, NMR crystallography, and
methodology development [185-194]. The overall facility usage rate is
~ 60%, with the 600 MHz wide-bore solid-state NMR being the most
heavily utilized.

2.18. Multiple user facilities in South Africa

The NMR facilities at Stellenbosch University (Central Analytical
Facilities, CAF), the University of the Witwatersrand, and Nelson Man-
dela University, are among the characterization hubs with solid-state
NMR capabilities in South Africa. These labs support studies on clays,
minerals, cements, catalysts, polymers, and biomaterials, addressing
structural problems in energy, mining, and environmental sustainability
[195-197]. Applications also include probing local structure in alumi-
nosilicates, tracking cement hydration, studying catalytic active sites,
and investigating drug—excipient interactions in pharmaceuticals.

2.19. Multiple SRFs in India (Vipin Agarwal)

India’s progress in solid-state NMR research has been driven by
growing technical expertise and improved access to both commercial
solution and solid-state NMR instrumentation. Several SRFs are already
in place at national research institutes and centers: Indian Institute of
Science (IISc, Bangalore) and technologies (IITs), Indian Institute of
Science and Research (IISER’s), Tata Institute of Fundamental Research
(Hyderabad), Centre of Biomedical Research (CBMR, Lucknow), Indian
Institute of Chemical Technology (IICT, Hyderabad), and the National
Magnetic Resonance Facility (NMRF, CSIR-NCL Pune). These SRFs have
been proving access to support a broad range of experiments including
static and MAS, multidimensional correlation spectroscopy including
studies of spin-half and quadrupolar nuclei [23,198], and actively
involved in designing novel solid-state NMR methods from
first-principles [198-203]. The facilities are geographically distributed
to enhance accessibility across the country. The IISc and the TIFR SRFs
were established as early as the 1980s and these facilities today host
eight spectrometers ranging from 400 to 800 MHz, with solution- and
solid-state capabilities, while NCL and IICT SRFs host 9 and 10 spec-
trometers, respectively, aligned with the mission of supporting NMR
access to researchers both in academia and industry nationwide. In
addition, the Industrial Research and Consultancy Centre at IIT Powai
hosts a 750 MHz solid-sate NMR spectrometer, accessible to both aca-
demic and industrial users. Most of the other centers operate solid-state
NMR instruments in the 300-700 MHz range and are equipped with 1.3
mm MAS probes capable of spinning up to 65 kHz. Two facilities also
house fast MAS probes operating at speeds up to 111 kHz, enabling
high-resolution proton detection in solids. Many of these SRFs actively
collaborate and support non-NMR researchers working in the area of
pharmaceuticals, energy storage, catalysis, polymers, COFs, MOFs,
biomolecules, and materials characterization [204-207]. Researchers
affiliated with these SRFs maintain close collaboration through the
National Magnetic Resonance Society (NMRS-India), established in
1995, which brings together more than 1,000 lifetime members from
India and around the world including scientists from NMR, EPR, NQR,
quantum computing, and related fields.

The SRFs in India also offer access to researchers, often at minimal
cost, in order to promote wider scientific participation and community
building, making an impact across disciplines. To promote awareness of
basic principles, recent advancements, and applications in NMR, the
SRFs frequently organize national-level training and workshops for
users. TIFR biannually organizes the advanced workshop to train and
attract new talent in the field, and NMRS organizes annual national
symposia hosted at different centers across the country and also supports
a variety of local events focused on specific areas within these disci-
plines, and to date featured over 30 annual symposia. Strengthening
collaboration = among academia, industry, and instrument
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manufacturers, along with upgrading SRFs, are projected to be an
important aspect optimizing resource sharing and promoting interdis-
ciplinary innovation. Recently, academia-industry allies have signifi-
cantly enhanced structural insight and quality assurance in applied
sectors such as pharma, oil, renewable energy, and materials companies.
To continue advancing the field, strategic investments are envisaged to
expand access to dynamic nuclear polarization (DNP), ultrafast MAS,
and high-field magnets.

2.20. Multiple SRFs in China (Guangjin Hou, Feng Deng)

Multiple user facilities for solid-state NMR have been established
across China, supporting cutting-edge research in chemistry, material
science, and structural biology. Major shared NMR facilities include the
Beijing NMR Center, the Center for Physicochemical Analysis and
Measurement (Beijing), the State Key Laboratory of Magnetic Resonance
Spectroscopy and Imaging (Wuhan), the Shanghai Key Laboratory of
Magnetic Resonance (Shanghai), the NMR center in Dalian Institute of
Chemical Physics (DICP, Dalian), and the Lanzhou NMR center (Lanz-
hou), University of Science and Technology of China (USTC, Hefei),
among others. These NMR centers host multiple standard solid-state
NMR spectrometers operating in 300-600 MHz, with some facilities
offering magnetic field up to 18.8 T (800 MHz), such as those in Beijing,
Wuhan, and Dalian. These platforms are fully equipped for conventional
solid-state NMR analysis as well as advanced experiments such as fast
MAS, MAS-CAT, Laser heating VT experiments. Notably, three DNP MAS
NMR instruments have been installed in Wuhan (400 MHz), Beijing
(600 MHz) and Shanghai (400 MHz), with several additional systems
currently on order by other NMR centers. Research groups within these
centers, particularly in Dalian, Wuhan and Shanghai, are actively
engaged in the development of advanced solid-state NMR methodolo-
gies [208-211]. Custom-built NMR equipment is also in operation,
including  hyperpolarized 129¢e  NMR (Wuhan, Dalian),
parahydrogen-induced polarization NMR (Wuhan, Shanghai),
high-temperature/high-pressure in situ MAS NMR (Dalian), in situ elec-
trochemistry NMR probes (Dalian, Shanghai), among others. All of these
solid-state NMR SRFs are accessible to domestic and international users
from both academic and industrial sectors, either free of charge or at
moderate fees according to the policies of each center.

Most SRFs maintain active collaborations with multidisciplinary re-
searchers in the field of chemistry, materials science and the life sci-
ences, and have supported numerous publications in areas such as
catalysis, energy storage materials, functional materials, polymers, and
biomolecules [212-216]. While China has now built a robust solid-state
NMR infrastructure comprising over 100 spectrometers dedicated to
solid-state NMR studies (most of which are within SRF platforms), the
community continues to work toward a more efficient, equitable and
user-friendly SRF network. Ongoing efforts aim to enhance resource and
expertise sharing, and to promote cross-disciplinary research and
innovation both nationally and globally.

In addition to the shared NMR platforms (primarily based on com-
mercial spectrometers), China is also advancing the research and
development of high-field NMR spectrometers. A prominent example is
the high-field NMR facility located in Beijing, which is dedicated to
developing an advanced hybrid superconducting magnet that integrates
both low- and high-temperature superconducting technologies to ach-
ieve magnetic fields ranging from 25 to 32 T (some currently under
construction), enabling NMR experiments at 'H frequencies exceeding 1
GHz. Complementing this effort, the High Magnetic Field Laboratory
(CHMFL) in Hefei operates steady-state magnets, including resistive,
superconducting, and hybrid systems, with current capabilities reaching
up to 45.22 T. The CHMFL hosts solid-state NMR systems operating
between 18.8 and 23.2 T, and supports high-end applications in chem-
istry, materials, and medical imaging through the integration of hybrid
magnets for NMR/MRI and surface-sensitive microscopy techniques for
molecular-level investigations [35,211,213,217-229].
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2.21. SRF in Singapore (Kai Xue)

The use of solid-state NMR spectroscopy is rapidly growing in Sin-
gapore’s shared facilities and centers. For example, the high field NMR
Centre at Nanyang Technological University (NTU), is emerging as a
national hub for advanced NMR capabilities. The center hosts moderate
to high-field ranging from 14.1 T to 18.8 T (600 MHz and 800 MHz)
solid-state NMR spectrometers. For the solid-state NMR measurements,
the facility is equipped with a comprehensive set of MAS probes (7 mm,
4 mm, 3.2 mm, 1.9 mm, and 0.7 mm) with varying MAS capabilities, a
high-resolution (HR)-MAS probe, a cryogenic probe for solution-state
NMR detection, and a microimaging system. During 2022-2024, the
center supported a wide range of research projects across disciplines
such as materials science, civil engineering, chemistry, physics, and
structural biology. Since 2019, the center has contributed to over 50
publications in biological studies [230,231], catalysis [232], and ma-
terials [233-235]. In addition to serving NTU researchers, the center
provides access to users from other national institutions, including the
National University Singapore (NUS), the Agency for Science, Tech-
nology and Research (A*STAR), and maintains active collaborations
with international partners from the UK, Germany, Belgium, Saudi
Arabia, Malaysia, Thailand, and China [236-241]. In response to
growing demand, the center is exploring future expansion, with a focus
on advanced high-field NMR applications including 2D correlation ex-
periments with indirect detection via proton and the study of low-y
nuclei and insensitive quadrupolar nuclei.

2.22. Multiple facilities in Australia and New Zealand

Examples of solid-state NMR facilities in Australia include University
of New South Wales (UNSW), Monash University (MU), Deakin Uni-
versity, University of Queensland, and the Australian National Univer-
sity (ANU). These hubs offer multinuclear NMR instrumentation with
MAS, variable-temperature control, and a suite of advanced pulse se-
quences, enabling users to characterize local structures and their impact
in driving bulk properties in molecular solids, polymers, inorganic ma-
terials, and biological systems [242,243]. Facilities at UNSW and ANU
involve in characterization of catalysts, battery and semiconductor
materials, glasses, polymers, and porous frameworks [244,245].

In New Zealand, the distributed NMR platforms at the University of
Auckland, Victoria University of Wellington, the University of Otago,
and the University of Canterbury feature solid-state NMR instrumenta-
tion and expert staff who provide training. Applications span energy
materials (batteries, catalysts, perovskites), organic electronics and
polymers, geological and cementitious solids, pharmaceuticals, and
agro/food systems (notably dairy and plant-based matrices) [246]. often
in partnership with Research Institutes such as GNS Science, Scion, and
AgResearch.

2.23. SRF in Yokohama, Japan (Takanori Kigawa)

In Japan, the RIKEN Yokohama NMR Research Infrastructure
(YNMR) offers access to thirteen high-performance NMR systems for
researchers within and outside RIKEN, including those from industry,
supporting diverse scientific fields such as chemistry, life sciences, ma-
terials science, environmental science, drug discovery, and healthcare
[247-253]. As one of Japan’s leading research infrastructures, YNMR
houses three 900 MHz NMR systems, including a solid-state NMR system
equipped with multiple probe heads with access to examine spin-half
and quadrupolar nuclei including 170, 27Al, *°sc, *°Nb, and *°La, to
name a few. In addition, YNMR serves as the lead institution of the
“NMR Platform,” a national network comprising eight NMR research
infrastructures and four partner companies, supported by Japan’s Min-
istry of Education, Culture, Sports, Science and Technology (MEXT). In
the past five years (2020-2024), YNMR infrastructure has enabled ac-
cess to 128 projects with 7253 access days, contributing to 108
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publications. Among them, 24 projects and publications involve
solid-state NMR research across a wide range of areas. In addition, ef-
forts have also been expended to construct high field magnets for NMR
applications [254].

3. Funding, organization, governance, and management

The national or regional SRFs are typically governed through multi-
tiered structures of management, which strategically align with national
research priorities. Facility directors and scientific advisory committees
provide strategic and technical leadership, while oversight boards
including representatives from academia, industry, and funding bodies,
ensure alignment with broader scientific, economic, and societal goals.
Engagement with industry can further strengthen the impact of SRFs by
supporting commercially relevant research and development. Financial
support for research, equipment, and infrastructure is usually provided
by national or regional governments, which reflects the value of SRFs as
public investments in scientific capacity, training, and competitiveness.
In many cases, this funding covers the acquisition and installation of
large-scale instrumentation, as well as ongoing needs such as mainte-
nance, consumables, upgrades, user training, outreach, administrative
costs, and sustainability initiatives.

Operationally, SRFs rely on strong coordination between adminis-
trative and scientific teams. Management oversees compliance, budg-
eting, safety, data governance, and strategic planning, while scientific
staff maintain instrumentation, schedule magnet time, develop
methods, and support user access, training, and data analysis. Instru-
ment time (magnet days) is often organized thematically or methodo-
logically to provide consistent access across disciplines and user groups.

Access to SRFs is typically regulated through open calls and peer-
reviewed proposal systems. Researchers submit proposals detailing
their scientific objectives, resource needs and specifications, and
required spectrometer time. Proposals are evaluated on merit, feasi-
bility, and alignment with SRF capabilities, while also considering user
diversity (e.g., students vs. early-career scientists vs. senior Pls; indus-
trial collaborations vs. fundamental research in strategic areas).

To sustain excellence in research dissemination and deliverables,
SRFs prioritize robust feedback and careful monitoring of scientific
output (i.e., publications, conference presentations, Ph.D. theses, etc.). In
this regard, the SRFs provide much more than access to instrumentation
and data collection. Training programs, such as workshops, tutorials,
hands-on experimentation, and direct participation in outreach activ-
ities are of great value as they promote knowledge sharing, build
operational proficiency, and support effective dissemination of research
outcomes and facility capabilities. During such training programs,
technical and scientific staff offer expert guidance tailored to user end-
goals, help design experiments, and support data analysis using
custom-built pipelines and software platforms. Staff play a central role
in guiding experiment design, troubleshooting methodologies, and
supporting data processing, which is especially important for re-
searchers from institutions with limited in-house expertise. Remote-
operation systems further expand access and collaborative capacity, a
need highlighted and accelerated during the COVID-19 pandemic. Ini-
tiatives such as the HORIZON-EU REMOTE-NMR (R-NMR, a project by a
consortium of 26 European NMR centers) aim to establish standardized
remote access platforms across European partners.

In addition to supporting individual research groups and projects,
SRFs are playing an increasingly important role in advancing open-
science practices. Many facilities are implementing standardized data
formats, rich metadata, and digital archiving frameworks aligned with
FAIR (Findability, Accessibility, Interoperability and Reuse) principles.
Since 2021, the MagLab encouraged users to adapt to the principles of
FAIR data management, which strive to make high-field NMR data more
accessible, interpretable, and reusable. Researchers are also encouraged
to use the Open Science Framework (OSF), with support from partners
including NSF, FSU and UF. In addition, the Network for Advanced NMR
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(NAN, funded by the NSF) has taken a step forward with the launch of
the NAN Data Archive and NAN Data Transport System (NDTS). These
platforms ensure that NMR data are automatically saved, securely
archived, organized, and linked to sample information, making them
readily accessible and easier to track.

4. Impact of SRFs on multidisciplinary research

The broader impact of large-scale solid-state NMR SRFs stems from
key advancements: (i) enhancements in sensitivity and resolution for
investigating mass- or volume-limited samples, including experiments
involving insensitive, unreceptive nuclides [22,26,55,255-265] and (ii)
the integration of solid-state NMR with other complementary analytical
techniques and computational modeling [42,266-275]. These advances,
along with new real-time, in situ and in operando experiments, enable the
investigation of molecular-level structure, dynamics, and reaction ki-
netics and their relation to physicochemical properties and emergent
functions of materials-this extends from small organic molecules to
complex hybrid materials to the largest polymeric and/or biological
macromolecules [18,32,34,276,277]. In addition, solid-state NMR
studies are increasingly investigating systems in their functional states
such as biomacromolecules at the cellular levels, thin films and mem-
branes of importance in energy storage and harvesting devices including
batteries and solar cells, and the natural biomass and biominerals such
as wood and bone [14,15,17,22,278-284].

A survey of the literature from 2015 to 2024 demonstrates a steady
increase in the use of solid-state NMR across multiple domains (Fig. 2),
including materials science, chemistry, pharmaceutical science, energy
storage, biomolecular sciences, and catalysis. Certain research fields
require substantially more NMR measurement time, staff expertise, and
iterative experiments to generate publishable data or resolve complex
structures, making direct comparisons between publication output and
instrument-time allocation challenging. Productivity per instrument
hour varies significantly across disciplines. Although it is difficult to
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precisely quantify the contributions of SRFs to the outcomes shown in
Fig. 2, they play a central role in enabling broad access to advanced
instrumentation, technical knowledge, and specialized methodologies
that are often difficult for individual groups to realize and implement.
For example, collaborative efforts across European SRFs have supported
major scientific achievements within the PANACEA network, demon-
strating the benefits of coordinated SRF support in driving community-
wide advances during its first three years of activity [148], and discus-
sion featured above highlight similar contributions from individual
SRFs. In this way, SRFs complement the topic-specific research programs
led by individual principal investigators.

A search using Clarivate® Web of Science with keywords “solid state
NMR” and “solid-state NMR” displayed approximately 29k and 26k
publications, respectively. These 29k publications span a broad range of
chemistry topics (including physical, analytical, applied, organic, and
inorganic chemistry) accounting for ~45 % of the total. Other areas
include materials science (~11 %), biological/biomedical/pharmaceu-
tical sciences (~7 %), multidisciplinary physics (~10 %), nanoscience
(~5 %), and polymers (~4 %). While solid-state NMR is also employed
in engineering, environmental science, and condensed-matter physics,
its activity is limited in these domains. Overall, this distribution high-
lights the multidisciplinary breadth of solid-state NMR and its increas-
ingly important role across diverse areas of contemporary research.

Fig. 3 shows publication trends over the past decade reflecting the
use of solid-state NMR spectroscopy in different research areas. In
chemistry and materials science, solid-state NMR has become indis-
pensable for elucidating local structure and intermolecular interactions,
with results consistently reported in 600-800 publications annually. The
rise in materials characterization is particularly noteworthy, increasing
from ~400 publications in 2015 to over 600 in 2024. Other fields
including nanoscience/technology, catalysis and pharmaceuticals have
seen growth, while outcomes of biomacromolecules and polymers have
remained steady.

In material solids, properties such as crystallinity, defect structures,

2015-2024
Chemistry (physical)
169
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Chemistry (multidisciplinary)
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Fig. 2. Distribution of solid-state NMR spectroscopy usage by research area (2015-2024), based on ~29k records from Clarivate® Web of Science.
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Fig. 3. Trends in publication outcome across selected research areas (2015-2024).

grain boundaries, and phase heterogeneity are among the determinants
of their performance. High-field solid-state NMR and DNP-enhanced
NMR, in combination with complementary analytical techniques,
make the connections between structures, properties, and function that
are necessary for understanding complex systems, including semi-
conductor films, nano- and quantum materials, functional polymers, and
organic-inorganic hybrid materials [15,285-293]. Solid-state NMR can
also be used to monitor phase transitions and the effects of electronic,
optical, and mechanical inputs and stressors, which are important for
applications in electronics, photonics, and spintronics. In situ solid-state
NMR studies under extreme conditions (temperature, pressure, illumi-
nation, etc.) can provide real-time insights into the effects of atomic and
molecular rearrangements on phase transitions, chemical trans-
formations, and/or degradation. Integration with other techniques and
computational modeling (e.g., Monte-Carlo methods, molecular dy-
namics, first-principles calculations, ShiftML, AI/ML crystal growth
calculations) serves to accelerate materials discovery in the aforemen-
tioned areas [42,266-274]. In nanotechnology, solid-state NMR has
advanced understanding of hybrid nanomaterials, nanoparticle surfaces,
and host-guest architectures, especially for energy storage and delivery
[294-297]. Studies of glasses and disordered systems has advanced with
multinuclear, and multidimensional experiments acquired with con-
ventional or DNP NMR spectrometers, enabling unprecedented resolu-
tion of atomic-scale structure and dynamics [298-303]. These
applications extend to the energy storage systems [304-306]. Combined
with computational modeling, these approaches reveal local environ-
ments, medium-range order, and dynamics, providing insights into
structure—property relationships in such amorphous materials. In addi-
tion, research on emerging molecular semiconductor such as metal
halide perovskites [17,131,286,288,307-313], and organic semi-
conductors [262,314-321] benefit from solid-state NMR spectroscopy
measurements and  analysis for gaining insights into
synthesis-structure-property relationships.

Protein and biomolecular applications have expanded from micro-
crystalline and fibrillar systems to complex assemblies such as mem-
brane proteins, amyloids, biomaterials and large supramolecular
complexes, providing atomic-level insights into structure and dynamics
in native-like environments [258,284,322-326]. The SRFs equipped
with solid-state NMR instrumentation have significantly contributed to
structural biology, particularly in the study of amyloid fibrils and ag-
gregates associated with neurodegenerative diseases such as Alz-
heimer’s and Parkinson’s. Solid-state NMR has uniquely enabled
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atomic-resolution insights into complex and dynamic membrane pro-
teins, information often inaccessible by means of other analytical tech-
niques. Additionally, research on naturally occurring biopolymers, such
as plant cellulose, nucleosides, and biomass-derived polymers, equally
benefits from solid-state NMR or DNP NMR measurements and analysis
[327-330].

In polymers, solid-state NMR spectroscopy enables quantitative
assessment of crystallinity, chain packing, segmental mobility, and
phase separation, directly linking microstructure to mechanical, ther-
mal, and electronic properties [331-335]. In this way, soft matter and
polymers, with their dynamic and multiscale structures, benefit from the
ability of solid-state NMR to resolve conformational difference/changes,
inter- and intramolecular interactions, and heterogeneous domains
[293,336-342]. For thin films and coatings, it can probe buried in-
terfaces, dopants, additives, detect subtle chemical modifications, and
reveal molecular orientation, all of which are important for applications
in electronics, packaging, and protective layers [262,318,321]. Its
ability to study interfaces without selective labeling is particularly
valuable for multi-component and heterogeneous systems. Another
booming research area is thin film polymeric organic semiconductors for
wider optoelectronics and energy paradigms [282,314,320,343,344].
Analysis of interfaces between multi-layer thin-films particularly benefit
from solid-state NMR and DNP NMR [280], though challenges remain.
The inherently low sensitivity of NMR can be limiting for the
nanometer-to-micrometer thicknesses typical of thin films and coatings,
where only microgram sample quantities are available. Achieving high
resolution in complex, disordered, or multiphase materials often re-
quires advanced isotopic labeling or fast sample spinning, which may be
costly or impractical for routine use. Interfaces present additional dif-
ficulties due to signal overlap from bulk phases and low interfacial
volume fractions.

Combined solid-state and DNP NMR investigations of heterogenous
catalysts in conjunction with modelling techniques have enabled
atomic-level insights into these materials, guiding the design of efficient
and robust catalysts for chemical conversions [345-350]. Complemen-
tary surface-sensitive techniques, such as X-ray photoelectron spec-
troscopy (XPS) and scanning tunneling microscopy (STM), work well
with solid-state NMR to reveal transient states and interfacial in-
teractions critical to catalytic function. In addition, porous materials
such as MOFs and COFs have greatly benefited from the conventional
solid-state and DNP NMR analysis, and modelling techniques, lending
insight into not only the complex molecular frameworks, but also into
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host-guest interactions and mobile components within MOFs that may
have value in future applications in sensors or data storage devices
[351-355].

In pharmaceutical research, solid-state NMR is entering a golden age,
enabling the differentiation of polymorphs, identification of unique
solvates, hydrates, and salts, and increasing our understanding of com-
plex drug formulations [129,356-368]. Active pharmaceutical in-
gredients (APIs) and nutraceuticals can be investigated in both their
“bulk” forms as well as in dosage formulations [252,357,367,369-371],
especially using multinuclear solid-state NMR methods. Structure
elucidation of both can be accomplished using 2D NMR analysis and/or
NMR crystallographic approaches [372,373]. The DNP NMR has
recently been shown to be useful for understanding the crystallization
processes of APIs, as well as for the detection of APIs in low concen-
trations. An exciting frontier is the use of solid-state NMR to investigate
protein-drug interactions and perform pharmacokinetics analyses—these
may be game changers for both manufacturers and consumers of a va-
riety of drug and nutraceutical products.

Industrially, solid-state NMR spectroscopy plays an increasingly vital
role in the characterization of pharmaceutical polymorphs, drug for-
mulations, catalysts, composite materials, and energy storage materials.
Its non-destructive nature, sensitivity to the local structure of each
atomic environment, and chemical specificity, make solid-state NMR an
indispensable tool for quality control, failure analysis, regulatory
compliance, and driving innovation across a plethora of commercial
sectors. Noteworthy techniques include HR-MAS based diffusion NMR
spectroscopy [374,375], dynamic magnetic resonance imaging (MRI) in
chemical process and reaction engineering [34,276,277], enabling the in
situ reaction monitoring and chemical separation. Importantly, several
SRFs have enabled this research in the context of industrial research and
developments by closely coordinating with pharma, chemical, energy,
and advanced materials companies [80,280,376-379].

The spectrometer vendors such as Bruker and JEOL, related hard-
ware vendors like Doty Scientific, Phoenix NMR, BlueSky NMR,
ePROBE, and NMR SERVICE, have all played significant roles in shaping
the trajectory of solid-state NMR research by driving both hardware and
software innovations. These advances include static and MAS probes,
higher magnetic fields, and low-temperature technologies have
dramatically improved spectral resolution and sensitivity, and in situ and
in operando capabilities that enable time-resolved NMR data acquisition,
permitting to carry out experiments that were previously inaccessible
[21,25,51,54,380-387]. Beyond instrumentation, these vendors have
fostered strong partnerships with the SRFs through collaborative pro-
jects, beta tests, workshops, sponsorships and training programs at
conferences, thereby accelerating the adoption of cutting-edge methods.
The SRFs also help producing spin-offs such as BlackFox (U.S. probe
construction), Quadrufy (Canada, NQR), and Bridgel2 (DNP). Their
sustained contributions have not only advanced methodology, but also
expanded the reach of solid-state NMR into emerging areas of chemistry,
life sciences and materials paradigm.

In a broader context, multidisciplinary research areas involving
chemistry, biochemistry, and advanced materials play a role in
addressing Sustainable Development Goals (UNSDG) [388,389], where
solid-state NMR is expected to find opportunities and challenges (Fig. 4).
Among the list of 17 goals as of the time of writing this article, the
aforementioned research publications and outcomes are linked to good
health and well-being (~60 %), affordable and clean energy (~11 %),
and climate action (~6 %). Research on biology, biomedical and phar-
maceuticals particularly contribute towards these goals, while under-
standing structure-property relationships helps better design
molecular/materials solids for clean energy and climate action. Addi-
tionally, industry innovation and infrastructure (UNSDG-09) are also
expected to benefit from research on materials solids.
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Fig. 4. Usage of solid-state NMR by research area (2015-2024) linked to the
Sustainable Development Goals. Approximately 29k hits are partitioned based
on Clarivate® Web of Science analysis.

5. Summary and looking forward

Looking ahead, current and future SRFs are expected to evolve as
innovation centers that not only provide access to advanced instru-
mentation but enhance progress in magnetic resonance spectroscopy
and imaging, enabling high-throughput characterization across disci-
plines. Sustainability will be central to this evolution—particularly for
SRFs operating GHz-class magnets, cryogenic probes, and high-field
DNP platforms—requiring continued efforts to minimize helium con-
sumption, improve cryogenic efficiency, and modernize infrastructure
in line with environmental and financial responsibility. Probe design
will remain an important aspect in solid-state and DNP NMR applica-
tions by directly influencing sensitivity, resolution, and experimental
capabilities at high magnetic fields and extreme conditions (i.e., MAS
frequencies >100 kHz, cryogenic temperatures, and high microwave-
power DNP setups). The rotor size, bearing design, and RF coil config-
uration must be precisely optimized to ensure mechanical stability, high
RF efficiency, and high-sensitivity detection on multiple channels, as
well as accommodating microwave irradiation from high-power gyro-
trons in the case of DNP MAS NMR probes. Moreover, customized probes
and sample tubes (rotors) expand the types of experiments that can be
performed, including multi-resonance detection (e.g., HCN, HFXY), in
situ monitoring, or sample environments that mimic harsh conditions (e.
g., temperature, gas flow, new generation of cryogenic MAS probes, or
electrochemical control). As materials, biological systems, and micro-
structured films become more complex—and sample quantities
decrease—such tailored probe solutions "will be crucial. Meeting these
challenges will also require closer integration with complementary
characterization techniques and computational modeling to link NMR
observables with functional performance across materials, pharmaceu-
tical, biological, catalytic, and energy-related fields.

Digital transformation including, real-time collaboration, and Al/
ML-assisted experiment design, data collection, reducing access bar-
riers and analysis is expected to gain popularity in NMR research
[390-392]. While many of these capabilities are still emerging and
implemented to varying degrees, they hold great promise for the future
of the field. Emerging applications in autonomous NMR control, pre-
dictive experiment planning, automated analysis pipelines, and
NMR-guided structure determination draw inspiration from parallel
advances in materials informatics and biomedical imaging. Interlinked
SRFs with shared expertise and complementary resources will play an
increasingly important role in enabling these capabilities.

At the same time, SRFs may face mounting pressures from rising
hardware costs, rapid technological turnover, and uneven user demand
can strain resources and accelerate instrument usage. High-field NMR
systems and DNP platforms demand frequent upgrades and place sig-
nificant burdens on cryogen supply chains, energy use, and maintenance
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budgets. Addressing these issues requires sustained investment in heli-
um recovery, efficient cooling technology, predictive maintenance, and,
importantly, specialized scientific and technical staff. Without dedicated
personnel, even state-of-the-art SRFs risk reduced uptime, limited
training capacity, and under-realized scientific impact. Achieving a
balance between sustainability, operational reliability, and financial
constraints will be essential to ensure the long-term viability of SRFs
with current (and future) funding models.

In summary, solid-state NMR will remain indispensable for
molecular-level characterization across scientific disciplines. To stay
competitive and maximize impact, SRFs must continue to evolve stra-
tegically, strengthen collaborations, and embrace sustainable, techno-
logically forward models of operation. If successful, they will provide
significant benefits to fields spanning materials science, sustainable
energy, health, catalysis, and quantum technologies, while contributing
to a more collaborative, open, and resilient global research ecosystem.
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